Results 1  10
of
2,039
Checking herbrand equalities and beyond
 IN VMCAI, VOLUME 3385 OF LNCS
, 2005
"... A Herbrand equality between expressions in a program is an equality which holds relative to the Herbrand interpretation of operators. We show that the problem of checking validity of positive Boolean combinations of Herbrand equalities at a given program point is decidable — even in presence of dis ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
A Herbrand equality between expressions in a program is an equality which holds relative to the Herbrand interpretation of operators. We show that the problem of checking validity of positive Boolean combinations of Herbrand equalities at a given program point is decidable — even in presence
Testing Herbrand Equalities and Beyond
"... A Herbrand equality between expressions in a program is an equality which holds relative to the Herbrand interpretation of operators. We show that the problem of testing validity of positive Boolean combinations of Herbrand equalities at a given program point is decidable — even in presence of dise ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A Herbrand equality between expressions in a program is an equality which holds relative to the Herbrand interpretation of operators. We show that the problem of testing validity of positive Boolean combinations of Herbrand equalities at a given program point is decidable — even in presence
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 880 (64 self)
 Add to MetaCart
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, encapsulation, and others. In a sense, Flogic stands in the same relationship to the objectoriented paradigm as classical predicate calculus stands to relational programming. Flogic has a modeltheoretic semantics and a sound and complete resolutionbased proof theory. A small number of fundamental concepts that come from objectoriented programming have direct representation in Flogic; other, secondary aspects of this paradigm are easily modeled as well. The paper also discusses semantic issues pertaining to programming with a deductive objectoriented language based on a subset of Flogic.
Theory and Practice of Constraint Handling Rules
, 1998
"... Constraint Handling Rules (CHR) are our proposal to allow more flexibility and applicationoriented customization of constraint systems. CHR are a declarative language extension especially designed for writing userdefined constraints. CHR are essentially a committedchoice language consisting of mu ..."
Abstract

Cited by 459 (36 self)
 Add to MetaCart
Constraint Handling Rules (CHR) are our proposal to allow more flexibility and applicationoriented customization of constraint systems. CHR are a declarative language extension especially designed for writing userdefined constraints. CHR are essentially a committedchoice language consisting of multiheaded guarded rules that rewrite constraints into simpler ones until they are solved. In this broad survey we aim at covering all aspects of CHR as they currently present themselves. Going from theory to practice, we will define syntax and semantics for CHR, introduce an important decidable property, confluence, of CHR programs and define a tight integration of CHR with constraint logic programming languages. This survey then describes implementations of the language before we review several constraint solvers  both traditional and non standard ones  written in the CHR language. Finally we introduce two innovative applications that benefited from using CHR.
The DLV System for Knowledge Representation and Reasoning
 ACM Transactions on Computational Logic
, 2002
"... Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believ ..."
Abstract

Cited by 455 (100 self)
 Add to MetaCart
Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believed assumptions, DLP is strictly more expressive than normal (disjunctionfree) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing problems of lower complexity in a simpler and more natural fashion. This paper presents the DLV system, which is widely considered the stateoftheart implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, functionfree disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to ∆P 3complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of
Bilattices and the Semantics of Logic Programming
, 1989
"... Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on prob ..."
Abstract

Cited by 444 (13 self)
 Add to MetaCart
Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on probabilistic valued logic. A fixed point semantics is developed for logic programming, allowing any bilattice as the space of truth values. The mathematics is little more complex than in the classical twovalued setting, but the result provides a natural semantics for distributed logic programs, including those involving confidence factors. The classical twovalued and the Kripke/Kleene threevalued semantics become special cases, since the logics involved are natural sublogics of Belnap's logic, the logic given by the simplest bilattice. 1 Introduction Often useful information is spread over a number of sites ("Does anybody know, did Willie wear a hat when he left this morning?") that can be speci...
Constraint Query Languages
, 1992
"... We investigate the relationship between programming with constraints and database query languages. We show that efficient, declarative database programming can be combined with efficient constraint solving. The key intuition is that the generalization of a ground fact, or tuple, is a conjunction ..."
Abstract

Cited by 380 (44 self)
 Add to MetaCart
of constraints over a small number of variables. We describe the basic Constraint Query Language design principles and illustrate them with four classes of constraints: real polynomial inequalities, dense linear order inequalities, equalities over an infinite domain, and boolean equalities. For the analysis
Extending and Implementing the Stable Model Semantics
, 2002
"... A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities ..."
Abstract

Cited by 395 (8 self)
 Add to MetaCart
A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities. A declarative semantics is developed which extends the stable model semantics of normal programs. The computational complexity of the language is shown to be similar to that of normal programs under the stable model semantics. A simple embedding of general weight constraint rules to a small subclass of the language called basic constraint rules is devised. An implementation of the language, the smodels system, is developed based on this embedding. It uses a two level architecture consisting of a frontend and a kernel language implementation. The frontend allows restricted use of variables and functions and compiles general weight constraint rules to basic constraint rules. A major part of the work is the development of an ecient search procedure for computing stable models for this kernel language. The procedure is compared with and empirically tested against satis ability checkers and an implementation of the stable model semantics. It offers a competitive implementation of the stable model semantics for normal programs and attractive performance for problems where the new types of rules provide a compact representation.
Results 1  10
of
2,039