Results 1  10
of
129,687
Characterization of the axiomatizable prenex fragments of firstorder Gödel logics
 IN 33RD INTERNATIONAL SYMPOSIUM ON MULTIPLEVALUED LOGIC. MAY 2003
, 2003
"... The prenex fragments of firstorder infinitevalued Gödel logics are classified. It is shown that the prenex Gödel logics characterized by finite and by uncountable subsets of [0,1] are axiomatizable, and that the prenex fragments of all countably infinite Gödel logics are not axiomatizable. ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
The prenex fragments of firstorder infinitevalued Gödel logics are classified. It is shown that the prenex Gödel logics characterized by finite and by uncountable subsets of [0,1] are axiomatizable, and that the prenex fragments of all countably infinite Gödel logics are not axiomatizable.
An Analysis of FirstOrder Logics of Probability
 Artificial Intelligence
, 1990
"... : We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies is greater ..."
Abstract

Cited by 316 (18 self)
 Add to MetaCart
: We consider two approaches to giving semantics to firstorder logics of probability. The first approach puts a probability on the domain, and is appropriate for giving semantics to formulas involving statistical information such as "The probability that a randomly chosen bird flies
Firstorder Gödel logics
, 2006
"... Firstorder Gödel logics are a family of infinitevalued logics where the sets of truth values V are closed subsets of [0,1] containing both 0 and 1. Different such sets V in general determine different Gödel logics GV (sets of those formulas which evaluate to 1 in every interpretation into V). It i ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
). It is shown that GV is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negationfree, and existential fragments of all firstorder Gödel logics are also
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 807 (45 self)
 Add to MetaCart
conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers
Temporal and modal logic
 HANDBOOK OF THEORETICAL COMPUTER SCIENCE
, 1995
"... We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic. ..."
Abstract

Cited by 1300 (17 self)
 Add to MetaCart
We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic.
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 880 (64 self)
 Add to MetaCart
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods
Nonmonotonic Reasoning, Preferential Models and Cumulative Logics
, 1990
"... Many systems that exhibit nonmonotonic behavior have been described and studied already in the literature. The general notion of nonmonotonic reasoning, though, has almost always been described only negatively, by the property it does not enjoy, i.e. monotonicity. We study here general patterns of ..."
Abstract

Cited by 624 (14 self)
 Add to MetaCart
of view are developed in parallel. The former point of view was pioneered by D. Gabbay in [10], while the latter has been advocated by Y. Shoham in [38]. Five such families are defined and characterized by representation theorems, relating the two points of view. One of the families of interest
Herbrand Theorems and Skolemization for Prenex Fuzzy Logics
"... Abstract. Approximate Herbrand theorems are established for firstorder fuzzy logics based on continuous tnorms, and used to provide prooftheoretic proofs of Skolemization for their Prenex fragments. Decidability and complexity results for particular fragments are obtained as consequences. ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. Approximate Herbrand theorems are established for firstorder fuzzy logics based on continuous tnorms, and used to provide prooftheoretic proofs of Skolemization for their Prenex fragments. Decidability and complexity results for particular fragments are obtained as consequences.
Results 1  10
of
129,687