Results 1  10
of
189,424
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
The role of deliberate practice in the acquisition of expert performance
 Psychological Review
, 1993
"... The theoretical framework presented in this article explains expert performance as the end result of individuals ' prolonged efforts to improve performance while negotiating motivational and external constraints. In most domains of expertise, individuals begin in their childhood a regimen of ef ..."
Abstract

Cited by 633 (13 self)
 Add to MetaCart
The theoretical framework presented in this article explains expert performance as the end result of individuals ' prolonged efforts to improve performance while negotiating motivational and external constraints. In most domains of expertise, individuals begin in their childhood a regimen
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in smallworld networks, Markov processes and gossipbased algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract

Cited by 529 (4 self)
 Add to MetaCart
the retention of information over time periods having either fixed or indefinite length. 1 Introduction A major problem in connectionist theory is to develop learning algorithms that can tap the full computational power of neural networks. Much progress has been made with feedforward networks, and attention
BoosTexter: A Boostingbased System for Text Categorization
"... This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text catego ..."
Abstract

Cited by 658 (20 self)
 Add to MetaCart
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
, 1988
"... AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide ..."
Abstract

Cited by 475 (8 self)
 Add to MetaCart
that the auxiliary orthogonalizing functions are nonlocal infinite series. In the present “neural network ” approach, based
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Fusion, Propagation, and Structuring in Belief Networks
 ARTIFICIAL INTELLIGENCE
, 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract

Cited by 482 (8 self)
 Add to MetaCart
Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used
A Practical Bayesian Framework for Backprop Networks
 Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract

Cited by 496 (20 self)
 Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
Results 1  10
of
189,424