Results 1  10
of
310,755
CSPs with Counters: a LikelihoodBased Heuristic
 In Proc. Workshop on Non Standard Constraint Processing, ECAI96
, 1996
"... Numerous applications of constraint satisfaction problems (CSP) exhibit global constraints. Such constraints abound in resourceallocationtype problems, as well as in other domains. The form of global constraint we consider are counter constraints, which limit the number of variables that may be as ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
be assigned particular values. This paper integrates counter constraints with the constraint satisfaction problem (CSP) paradigm in a novel manner. Counter constraints are problematic for most heuristics, which are local in scope. We suggest a useful heuristic for value ordering, based on estimated likelihood
The FF planning system: Fast plan generation through heuristic search
 Journal of Artificial Intelligence Research
, 2001
"... We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be ind ..."
Abstract

Cited by 822 (53 self)
 Add to MetaCart
We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1149 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
A Maximum Entropy approach to Natural Language Processing
 COMPUTATIONAL LINGUISTICS
, 1996
"... The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we des ..."
Abstract

Cited by 1341 (5 self)
 Add to MetaCart
describe a method for statistical modeling based on maximum entropy. We present a maximumlikelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model
Probabilistic Latent Semantic Analysis
 In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract

Cited by 760 (9 self)
 Add to MetaCart
Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of cooccurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order
A Language Modeling Approach to Information Retrieval
, 1998
"... Models of document indexing and document retrieval have been extensively studied. The integration of these two classes of models has been the goal of several researchers but it is a very difficult problem. We argue that much of the reason for this is the lack of an adequate indexing model. This sugg ..."
Abstract

Cited by 1142 (40 self)
 Add to MetaCart
an approach to retrieval based on probabilistic language modeling. We estimate models for each document individually. Our approach to modeling is nonparametric and integrates document indexing and document retrieval into a single model. One advantage of our approach is that collection statistics which
Results 1  10
of
310,755