Results 1  10
of
386,651
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
Estimating Continuous Distributions in Bayesian Classifiers
 In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract

Cited by 489 (2 self)
 Add to MetaCart
the normality assumption and instead use statistical methods for nonparametric density estimation. For a naive Bayesian classifier, we present experimental results on a variety of natural and artificial domains, comparing two methods of density estimation: assuming normality and modeling each conditional
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 826 (88 self)
 Add to MetaCart
), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm
Dynamic topic models
 In ICML
, 2006
"... Scientists need new tools to explore and browse large collections of scholarly literature. Thanks to organizations such as JSTOR, which scan and index the original bound archives of many journals, modern scientists can search digital libraries spanning hundreds of years. A scientist, suddenly ..."
Abstract

Cited by 656 (28 self)
 Add to MetaCart
Scientists need new tools to explore and browse large collections of scholarly literature. Thanks to organizations such as JSTOR, which scan and index the original bound archives of many journals, modern scientists can search digital libraries spanning hundreds of years. A scientist, suddenly
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption
Tinydb: An acquisitional query processing system for sensor networks
 ACM Trans. Database Syst
, 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract

Cited by 609 (8 self)
 Add to MetaCart
of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination
Fronts propagating with curvature dependent speed: algorithms based on Hamiltonâ€“Jacobi formulations
 Journal of Computational Physics
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1183 (64 self)
 Add to MetaCart
We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion
Domain names  Implementation and Specification
 RFC883, USC/Information Sciences Institute
, 1983
"... This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official pr ..."
Abstract

Cited by 715 (9 self)
 Add to MetaCart
This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official
EigenTracking: Robust Matching and Tracking of Articulated Objects Using a ViewBased Representation
 International Journal of Computer Vision
, 1998
"... This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image r ..."
Abstract

Cited by 656 (16 self)
 Add to MetaCart
This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image
Results 1  10
of
386,651