Results 1  10
of
1,878,155
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 973 (4 self)
 Add to MetaCart
. These exact results are to be preferred to approximate methods based on measurements of a few selected points. The unit quaternion representing the best rotation is the eigenvector associated with the most positive eigenvalue of a symmetric 4 X 4 matrix. The elements of this matrix are combinations of sums
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 538 (29 self)
 Add to MetaCart
In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors can be consistently estimated using the criterion. The theory is developed under the framework of large crosssections (N) and large time dimensions (T). No restriction is imposed on the relation between N and T. Simulations show that the proposed criterion yields almost precise estimates of the number of factors for configurations of the panel data encountered in practice. The idea that variations in a large number of economic variables can be modelled bya small number of reference variables is appealing and is used in manyeconomic analysis. In the finance literature, the arbitrage pricing theory(APT) of Ross (1976) assumes that a small number of factors can be used to explain a large number of asset returns.
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
 J. COMP. PHYS
, 1981
"... Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution ..."
Abstract

Cited by 959 (2 self)
 Add to MetaCart
are worth striving for. It is shown that these features can be obtained by constructing a matrix with a certain “Property U.” Matrices having this property are exhibited for the equations of steady and unsteady gasdynamics. In order to construct them, it is found helpful to introduce “parameter vectors
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
the problem and its relevance, its statistical behavior, its history and current developments, and the central ideas of the algorithms and their complexities. We present a number of experiments to compare the performance of the different algorithms and show which are the best choices according to each case
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph which corre...
Gravity with Gravitas: a Solution to the Border Puzzle
, 2001
"... Gravity equations have been widely used to infer trade ow effects of various institutional arrangements. We show that estimated gravity equations do not have a theoretical foundation. This implies both that estimation suffers from omitted variables bias and that comparative statics analysis is unfo ..."
Abstract

Cited by 610 (3 self)
 Add to MetaCart
Gravity equations have been widely used to infer trade ow effects of various institutional arrangements. We show that estimated gravity equations do not have a theoretical foundation. This implies both that estimation suffers from omitted variables bias and that comparative statics analysis
Results 1  10
of
1,878,155