Results 1  10
of
395,041
Balanced Paths in Colored Graphs
, 2009
"... Abstract. We consider finite graphs whose edges are labeled with elements, called colors, taken from a fixed finite alphabet. We study the problem of determining whether there is an infinite path where either (i) all colors occur with the same asymptotic frequency, or (ii) there is a constant which ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. We consider finite graphs whose edges are labeled with elements, called colors, taken from a fixed finite alphabet. We study the problem of determining whether there is an infinite path where either (i) all colors occur with the same asymptotic frequency, or (ii) there is a constant which
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Secure Group Communications Using Key Graphs
, 1998
"... Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract

Cited by 552 (17 self)
 Add to MetaCart
management. We formalize the notion of a secure group as a triple (U; K;R) where U denotes a set of users, K a set of keys held by the users, and R a userkey relation. We then introduce key graphs to specify secure groups. For a special class of key graphs, we present three strategies for securely
A HighThroughput Path Metric for MultiHop Wireless Routing
, 2003
"... This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination. The E ..."
Abstract

Cited by 1078 (5 self)
 Add to MetaCart
This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination
Efficiently computing static single assignment form and the control dependence graph
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1991
"... In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single ass ..."
Abstract

Cited by 997 (8 self)
 Add to MetaCart
assignment form and the control dependence graph have been proposed to represent data flow and control flow propertiee of programs. Each of these previously unrelated techniques lends efficiency and power to a useful class of program optimization. Although both of these structures are attractive
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
A Separator Theorem for Planar Graphs
, 1977
"... Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which
Results 1  10
of
395,041