Results 1  10
of
4,950,657
Nonparametric estimation of average treatment effects under exogeneity: a review
 REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract

Cited by 597 (26 self)
 Add to MetaCart
as exogeneity, unconfoundedness, or selection on observables. The implication of these assumptions is that systematic (for example, average or distributional) differences in outcomes between treated and control units with the same values for the covariates are attributable to the treatment. Recent analysis has
An introduction to variable and feature selection
 Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract

Cited by 1283 (16 self)
 Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend
Regression Shrinkage and Selection Via the Lasso
 Journal of the Royal Statistical Society, Series B
, 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract

Cited by 4055 (51 self)
 Add to MetaCart
that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also
The case for motivated reasoning
 Psychological Bulletin
, 1990
"... It is proposed that motivation may affect reasoning through reliance on a biased set of cognitive processes—that is, strategies for accessing, constructing, and evaluating beliefs. The motivation to be accurate enhances use of those beliefs and strategies that are considered most appropriate, wherea ..."
Abstract

Cited by 687 (3 self)
 Add to MetaCart
It is proposed that motivation may affect reasoning through reliance on a biased set of cognitive processes—that is, strategies for accessing, constructing, and evaluating beliefs. The motivation to be accurate enhances use of those beliefs and strategies that are considered most appropriate, whereas the motivation to arrive at particular conclusions enhances use of those that are considered most likely to yield the desired conclusion. There is considerable evidence that people are more likely to arrive at conclusions that they want to arrive at, but their ability to do so is constrained by their ability to construct seemingly reasonable justifications for these conclusions. These ideas can account for a wide variety of research concerned with motivated reasoning. The notion that goals or motives affect reasoning has a long and controversial history in social psychology. The propositions that motives may affect perceptions (Erdelyi, 1974), attitudes (Festinger, 1957), and attributions (Heider, 1958) have been put forth by some psychologists and challenged by others. Although early researchers and theorists took it for granted that motivation may cause people to make selfserving attributions
A Comparative Study on Feature Selection in Text Categorization
, 1997
"... This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI), ..."
Abstract

Cited by 1294 (15 self)
 Add to MetaCart
This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI
Worstcase equilibria
 IN PROCEEDINGS OF THE 16TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
, 1999
"... In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a ver ..."
Abstract

Cited by 851 (17 self)
 Add to MetaCart
In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a very simple network leads to some interesting mathematics, results, and open problems.
Lag length selection and the construction of unit root tests with good size and power
 Econometrica
, 2001
"... It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We conside ..."
Abstract

Cited by 534 (14 self)
 Add to MetaCart
It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We
Results 1  10
of
4,950,657