• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 249,077
Next 10 →

PCA-SIFT: A more distinctive representation for local image descriptors

by Yan Ke, Rahul Sukthankar , 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract - Cited by 572 (6 self) - Add to MetaCart
Analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCAbased local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image

Histograms of Oriented Gradients for Human Detection

by Navneet Dalal, Bill Triggs - In CVPR , 2005
"... We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly out ..."
Abstract - Cited by 3678 (9 self) - Add to MetaCart
outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks

A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS

by Krystian Mikolajczyk, Cordelia Schmid , 2005
"... In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their perfo ..."
Abstract - Cited by 1752 (53 self) - Add to MetaCart
that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.

Probabilistic Principal Component Analysis

by Michael E. Tipping, Chris M. Bishop - Journal of the Royal Statistical Society, Series B , 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of paramet ..."
Abstract - Cited by 703 (5 self) - Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation

Survey on Independent Component Analysis

by Aapo Hyvärinen - NEURAL COMPUTING SURVEYS , 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract - Cited by 2241 (104 self) - Add to MetaCart
of the original data. Well-known linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes

A Compositional Approach to Performance Modelling

by Jane Hillston , 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract - Cited by 746 (102 self) - Add to MetaCart
Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more

Convex Analysis

by R. Tyrrell Rockafellar , 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract - Cited by 5350 (67 self) - Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a

A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting

by Yoav Freund, Robert E. Schapire , 1996
"... ..."
Abstract - Cited by 3437 (65 self) - Add to MetaCart
Abstract not found

Chebyshev and Fourier Spectral Methods

by John P. Boyd , 1999
"... ..."
Abstract - Cited by 778 (12 self) - Add to MetaCart
Abstract not found

Nonlinear component analysis as a kernel eigenvalue problem

by Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller - , 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract - Cited by 1554 (85 self) - Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Next 10 →
Results 1 - 10 of 249,077
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University