Results 1  10
of
793,004
The FF planning system: Fast plan generation through heuristic search
 Journal of Artificial Intelligence Research
, 2001
"... We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be ind ..."
Abstract

Cited by 822 (53 self)
 Add to MetaCart
to be independent. We introduce a novel search strategy that combines Hillclimbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS2000 planning competition. We review
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Automatic Word Sense Discrimination
 Journal of Computational Linguistics
, 1998
"... This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which closen ..."
Abstract

Cited by 530 (1 self)
 Add to MetaCart
This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Toward an instance theory of automatization
 Psychological Review
, 1988
"... This article presents a theory in which automatization is construed as the acquisition of a domainspecific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur ..."
Abstract

Cited by 613 (37 self)
 Add to MetaCart
an alternative to the modal view of automaticity, arguing that novice performance is limited by a lack of knowledge rather than a scarcity of resources. The focus on learning avoids many problems with the modal view that stem from its focus on resource limitations. Automaticity is an important phenomenon
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract

Cited by 746 (102 self)
 Add to MetaCart
easily modelled. In this thesis a novel compositional approach to performance modelling is presented. This approach is based on a suitably enhanced process algebra, PEPA (Performance Evaluation Process Algebra). The compositional nature of the language provides benefits for model solution as well
Searching in metric spaces
, 2001
"... The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather gen ..."
Abstract

Cited by 432 (38 self)
 Add to MetaCart
The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Results 1  10
of
793,004