Results 1  10
of
178,995
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown
Automatic Word Sense Discrimination
 Journal of Computational Linguistics
, 1998
"... This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which closen ..."
Abstract

Cited by 530 (1 self)
 Add to MetaCart
This paper presents contextgroup discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a highdimensional, realvalued space in which
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
basis functions than a comparable SVM while oering a number of additional advantages. These include the benets of probabilistic predictions, automatic estimation of `nuisance' parameters, and the facility to utilise arbitrary basis functions (e.g. non`Mercer' kernels).
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
ERC  A Theory of Equity, Reciprocity and Competition
 FORTHCOMING AMERICAN ECONOMIC REVIEW
, 1999
"... We demonstrate that a simple model, constructed on the premise that people are motivated by both their pecuniary payoff and their relative payoff standing, explains behavior in a wide variety of laboratory games. Included are games where equity is thought to be a factor, such as ultimatum, twoperio ..."
Abstract

Cited by 699 (21 self)
 Add to MetaCart
We demonstrate that a simple model, constructed on the premise that people are motivated by both their pecuniary payoff and their relative payoff standing, explains behavior in a wide variety of laboratory games. Included are games where equity is thought to be a factor, such as ultimatum, two
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 488 (19 self)
 Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multiscale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and c ..."
Abstract

Cited by 778 (21 self)
 Add to MetaCart
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity
Results 1  10
of
178,995