• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 46,897
Next 10 →

Missing data: Our view of the state of the art

by Joseph L. Schafer, John W. Graham - Psychological Methods , 2002
"... Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missing-data problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random ..."
Abstract - Cited by 689 (1 self) - Add to MetaCart
most data analysis proce-dures were not designed for them. Missingness is usu-ally a nuisance, not the main focus of inquiry, but

The particel swarm: Explosion, stability, and convergence in a multi-dimensional complex space

by Maurice Clerc, James Kennedy - IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract - Cited by 822 (10 self) - Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately

The Elements of Statistical Learning -- Data Mining, Inference, and Prediction

by Trevor Hastie, Robert Tibshirani, Jerome Friedman
"... ..."
Abstract - Cited by 1320 (13 self) - Add to MetaCart
Abstract not found

Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation

by Gary King, James Honaker, Anne Joseph, Kenneth Scheve - American Political Science Review , 2000
"... We propose a remedy for the discrepancy between the way political scientists analyze data with missing values and the recommendations of the statistics community. Methodologists and statisticians agree that "multiple imputation" is a superior approach to the problem of missing data scatter ..."
Abstract - Cited by 389 (49 self) - Add to MetaCart
We propose a remedy for the discrepancy between the way political scientists analyze data with missing values and the recommendations of the statistics community. Methodologists and statisticians agree that "multiple imputation" is a superior approach to the problem of missing data

Missing value estimation methods for DNA microarrays

by Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David, David Botstein, Russ B. Altman , 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clu ..."
Abstract - Cited by 476 (26 self) - Add to MetaCart
-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied

Discovering Statistically Significant Biclusters in Gene Expression Data

by Amos Tanay, Roded Sharan, Ron Shamir - In Proceedings of ISMB 2002 , 2002
"... In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under p ..."
Abstract - Cited by 299 (4 self) - Add to MetaCart
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under

Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains

by David C. Plaut , James L. McClelland, Mark S. Seidenberg, Karalyn Patterson - PSYCHOLOGICAL REVIEW , 1996
"... We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract - Cited by 583 (94 self) - Add to MetaCart
in subsequent simulations, including an attractor network that reproduces the naming latency data directly in its time to settle on a response. Further analyses of the network's ability to reproduce data on impaired reading in surface dyslexia support a view of the reading system that incorporates a graded

A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge

by Thomas K Landauer, Susan T. Dutnais - PSYCHOLOGICAL REVIEW , 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract - Cited by 1772 (10 self) - Add to MetaCart
(LSA), is presented and used to successfully simulate such learning and several other psycholinguistic phenomena. By inducing global knowledge indirectly from local co-occurrence data in a large body of representative text, LSA acquired knowledge about the full vocabulary of English at a comparable

A Meta-Analytic Review of Experiments Examining the Effects of Extrinsic Rewards on Intrinsic Motivation

by Edward L. Deci, Richard Koestner, Richard M. Ryan
"... A meta-analysis of 128 studies examined the effects of extrinsic rewards on intrinsic motivation. As predicted, engagement-contingent, completion-contingent, and performance-contingent rewards signifi-cantly undermined free-choice intrinsic motivation (d =-0.40,-0.36, and-0.28, respectively), as did ..."
Abstract - Cited by 602 (16 self) - Add to MetaCart
A meta-analysis of 128 studies examined the effects of extrinsic rewards on intrinsic motivation. As predicted, engagement-contingent, completion-contingent, and performance-contingent rewards signifi-cantly undermined free-choice intrinsic motivation (d =-0.40,-0.36, and-0.28, respectively

Time Discounting and Time Preference: A Critical Review

by Shane Frederick, George Loewenstein - Journal of Economic Literature , 2002
"... www.people.cornell.edu/pages/edo1/. ..."
Abstract - Cited by 754 (17 self) - Add to MetaCart
www.people.cornell.edu/pages/edo1/.
Next 10 →
Results 1 - 10 of 46,897
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University