Results 1  10
of
1,317,216
Asking Questions to Minimize Errors
 In Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory
, 1993
"... A number of efficient learning algorithms achieve exact identification of an unknown function from some class using membership and equivalence queries. Using a standard transformation such algorithms can easily be converted to online learning algorithms that use membership queries. Under such a tra ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
A number of efficient learning algorithms achieve exact identification of an unknown function from some class using membership and equivalence queries. Using a standard transformation such algorithms can easily be converted to online learning algorithms that use membership queries. Under such a transformation the number of equivalence queries made by the query algorithm directly corresponds to the number of mistakes made by the online algorithm. In this paper we consider several of the natural classes known to be learnable in this setting, and investigate the minimum number of equivalence queries with accompanying counterexamples (or equivalently the minimum number of mistakes in the online model) that can be made by a learning algorithm that makes a polynomial number of membership queries and uses polynomial computation time. We are able both to reduce the number of equivalence queries used by the previous algorithms and often to prove matching lower bounds. As an example, consider...
Bid, ask and transaction prices in a specialist market with heterogeneously informed traders
 Journal of Financial Economics
, 1985
"... The presence of traders with superior information leads to a positive bidask spread even when the specialist is riskneutral and makes zero expected profits. The resulting transaction prices convey information, and the expectation of the average spread squared times volume is bounded by a number th ..."
Abstract

Cited by 1217 (5 self)
 Add to MetaCart
The presence of traders with superior information leads to a positive bidask spread even when the specialist is riskneutral and makes zero expected profits. The resulting transaction prices convey information, and the expectation of the average spread squared times volume is bounded by a number
Minimum Error Rate Training in Statistical Machine Translation
, 2003
"... Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training cri ..."
Abstract

Cited by 663 (7 self)
 Add to MetaCart
Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training criteria which directly optimize translation quality.
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
Convergent Treereweighted Message Passing for Energy Minimization
 ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI)
, 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract

Cited by 491 (16 self)
 Add to MetaCart
Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered as a generalization of Paige and Saunders’ MINRES algorithm and is theoretically equivalent to the Generalized Conjugate Residual (GCR) method and to ORTHODIR. The new algorithm presents several advantages over GCR and ORTHODIR.
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
output representations. This paper compares these three approaches to a new technique in which errorcorrecting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. sect
 A
, 1991
"... Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the q ..."
Abstract

Cited by 1016 (9 self)
 Add to MetaCart
Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description
TransformationBased ErrorDriven Learning and Natural Language Processing: A Case Study in PartofSpeech Tagging
 Computational Linguistics
, 1995
"... this paper, we will describe a simple rulebased approach to automated learning of linguistic knowledge. This approach has been shown for a number of tasks to capture information in a clearer and more direct fashion without a compromise in performance. We present a detailed case study of this learni ..."
Abstract

Cited by 916 (7 self)
 Add to MetaCart
this paper, we will describe a simple rulebased approach to automated learning of linguistic knowledge. This approach has been shown for a number of tasks to capture information in a clearer and more direct fashion without a compromise in performance. We present a detailed case study of this learning method applied to part of speech tagging
Results 1  10
of
1,317,216