Results 1  10
of
261,476
ApproximatingCVP to Within AlmostPolynomial Factors is NPhard
 In Proc. 39th IEEE Symp. on Foundations of Computer Science
, 1998
"... This paper shows the closest vector in a lattice to be NPhard to approximate to within any factor up to 2 (log n) 1\Gammaffl where ffl = (log log n) \Gammaff for any constant ff ! 1 2 . Introduction Background A lattice L = L(v 1 ; ::; vn ), for vectors v 1 ; ::; vn 2 R n is the set of ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
This paper shows the closest vector in a lattice to be NPhard to approximate to within any factor up to 2 (log n) 1\Gammaffl where ffl = (log log n) \Gammaff for any constant ff ! 1 2 . Introduction Background A lattice L = L(v 1 ; ::; vn ), for vectors v 1 ; ::; vn 2 R n is the set
Approximating SVP∞ to within AlmostPolynomial Factors is NPhard
 ITUT RECOMMENDATION G.729
, 1996
"... This paper shows SVP∞ and CVP∞ to be NPhard to approximate to within any factor up to n 1= log log n . This improves on the best previous result [ABSS93] that showed quasiNP hardness for smaller factors, namely 2 log 1\Gamma" n for any constant " ? 0. We show a direct reduction ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
This paper shows SVP∞ and CVP∞ to be NPhard to approximate to within any factor up to n 1= log log n . This improves on the best previous result [ABSS93] that showed quasiNP hardness for smaller factors, namely 2 log 1\Gamma" n for any constant " ? 0. We show a direct reduction
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 822 (39 self)
 Add to MetaCart
the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanalysis.) 1
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
o(1)) ln n), and previous results of Lund and Yannakakis, that showed hardness of approximation within a ratio of (log 2 n)=2 ' 0:72 lnn. For max kcover we show an approximation threshold of (1 \Gamma 1=e) (up to low order terms), under the assumption that P != NP .
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a family of volume rendering algorithms that reduces rendering times to one second. First we present a scanlineorder volume rendering algorithm that exploits coherence in both the volume data and the image. We show that scanlineorder algorithms are fundamentally more efficient than commonlyused ray casting algorithms because the latter must perform analytic geometry calculations (e.g. intersecting rays with axisaligned boxes). The new scanlineorder algorithm simply streams through the volume and the image in storage order. We describe variants of the algorithm for both parallel and perspective projections and
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Implementing data cubes efficiently
 In SIGMOD
, 1996
"... Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total ..."
Abstract

Cited by 545 (1 self)
 Add to MetaCart
to materialize. The greedy algorithm performs within a small constant factor of optimal under a variety of models. We then consider the most common case of the hypercube lattice and examine the choice of materialized views for hypercubes in detail, giving some good tradeoffs between the space used
A Digital Signature Scheme Secure Against Adaptive ChosenMessage Attacks
, 1995
"... We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen in a ..."
Abstract

Cited by 985 (43 self)
 Add to MetaCart
We present a digital signature scheme based on the computational diculty of integer factorization. The scheme possesses the novel property of being robust against an adaptive chosenmessage attack: an adversary who receives signatures for messages of his choice (where each message may be chosen
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Results 1  10
of
261,476