Results 1  10
of
1,793,478
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2121 (61 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when
Approximating discrete probability distributions with dependence trees
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1968
"... A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n variables ..."
Abstract

Cited by 878 (0 self)
 Add to MetaCart
A method is presented to approximate optimally an ndimensional discrete probability distribution by a product of secondorder distributions, or the distribution of the firstorder tree dependence. The problem is to find an optimum set of n1 first order dependence relationship among the n
PComplete Approximation Problems
, 1976
"... For Pcomplete problems such as traveling salesperson, cycle covers, 01 integer programming, multicommodity network flows, quadratic assignment, etc, it is shown that the approximation problem is also Pcomplete In contrast with these results, a linear time approximation algorithm for the clusterin ..."
Abstract

Cited by 376 (0 self)
 Add to MetaCart
For Pcomplete problems such as traveling salesperson, cycle covers, 01 integer programming, multicommodity network flows, quadratic assignment, etc, it is shown that the approximation problem is also Pcomplete In contrast with these results, a linear time approximation algorithm
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 674 (15 self)
 Add to MetaCart
the convergence the more exact the approximation. • If the hidden nodes are binary, then thresholding the loopy beliefs is guaranteed to give the most probable assignment, even though the numerical value of the beliefs may be incorrect. This result only holds for nodes in the loop. In the maxproduct (or "
A Framework for Uplink Power Control in Cellular Radio Systems
 IEEE Journal on Selected Areas in Communications
, 1996
"... In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection by limiting the interference caused by other users. Several models have been considered including: (1) fixed base station assignment where the assignment of users to base stations ..."
Abstract

Cited by 649 (18 self)
 Add to MetaCart
stations is fixed, (2) minimum power assignment where a user is iteratively assigned to the base station at which its signal to interference ratio is highest, and (3) diversity reception, where a user's signal is combined from several or perhaps all base stations. For the above models, the uplink
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 658 (27 self)
 Add to MetaCart
its traffic on the minimumlatency path available to it, given the network congestion caused by the other users. In general such a “selfishly motivated ” assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 553 (21 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task
Maxmargin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract

Cited by 602 (15 self)
 Add to MetaCart
the ability to use highdimensional feature spaces, and from their strong theoretical guarantees. However, many realworld tasks involve sequential, spatial, or structured data, where multiple labels must be assigned. Existing kernelbased methods ignore structure in the problem, assigning labels
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
, 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract

Cited by 704 (19 self)
 Add to MetaCart
The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown
Results 1  10
of
1,793,478