Results 1  10
of
1,141,972
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract

Cited by 562 (15 self)
 Add to MetaCart
A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 514 (20 self)
 Add to MetaCart
We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 659 (7 self)
 Add to MetaCart
A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining
Predicting Internet Network Distance with CoordinatesBased Approaches
 In INFOCOM
, 2001
"... In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract

Cited by 633 (5 self)
 Add to MetaCart
In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
The use of the area under the ROC curve in the evaluation of machine learning algorithms
 Pattern Recognition
, 1997
"... AbstractIn this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multilayer Percept ..."
Abstract

Cited by 664 (3 self)
 Add to MetaCart
AbstractIn this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Results 1  10
of
1,141,972