Results 1  10
of
139,064
Approximating Wardrop Equilibria with Finitely Many Agents
"... We present efficient algorithms for computing approximate Wardrop equilibria in a distributed and concurrent fashion. Our algorithms are exexuted by a finite number of agents each of which controls the flow of one commodity striving to balance the induced latency over all utilised paths. The set of ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
We present efficient algorithms for computing approximate Wardrop equilibria in a distributed and concurrent fashion. Our algorithms are exexuted by a finite number of agents each of which controls the flow of one commodity striving to balance the induced latency over all utilised paths. The set
Worstcase equilibria
 IN PROCEEDINGS OF THE 16TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
, 1999
"... In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a ver ..."
Abstract

Cited by 851 (17 self)
 Add to MetaCart
In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a
Wardrop equilibria
 Encyclopedia of Operations Research and Management Science
, 2010
"... A common behavioral assumption in the study of transportation and telecommunication networks is that travelers or packets, respectively, choose routes that they perceive as being the shortest under the prevailing traffic conditions [1]. The situation resulting from these individual decisions is one ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
is one in which drivers cannot reduce their journey times by unilaterally choosing another route, which prompted Knight [2] to call the resulting traffic pattern an equilibrium. Nowadays, it is indeed known as the Wardrop (or user) equilibrium [3], and it is effectively thought of as a steady state
Distributed Learning of Wardrop Equilibria
 IN "7TH INTERNATIONAL CONFERENCE ON UNCONVENTIONAL COMPUTATION  UC 2008) LECTURE NOTES IN COMPUTER SCIENCE, AUTRICHE VIENNE
"... We consider the problem of learning equilibria in a well known game theoretic traffic model due to Wardrop. We consider a distributed learning algorithm that we prove to converge to equilibria. The proof of convergence is based on a differential equation governing the global macroscopic evolution of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We consider the problem of learning equilibria in a well known game theoretic traffic model due to Wardrop. We consider a distributed learning algorithm that we prove to converge to equilibria. The proof of convergence is based on a differential equation governing the global macroscopic evolution
Debt, deficits and finite horizons
 Journal of Political Economy
, 1985
"... Weitzman have improved this paper. I thank NSF for financial ..."
Abstract

Cited by 579 (1 self)
 Add to MetaCart
Weitzman have improved this paper. I thank NSF for financial
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview
Wardrop equilibria with riskaverse users
 Transportation Science
, 2010
"... Network games can be used to model competitive situations in which agents select routes to minimize their cost. Common applications include traffic, telecommunication, and distribution networks. Although traditional network models have assumed that realized costs only depend on congestion, in most a ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Wardrop equilibria can be computed efficiently in practice: The former reduces to a standard Wardrop
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
related methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 678 (27 self)
 Add to MetaCart
traffic such that the sum of all travel times—the total latency—is minimized. In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes
Formalising trust as a computational concept
, 1994
"... Trust is a judgement of unquestionable utility — as humans we use it every day of our lives. However, trust has suffered from an imperfect understanding, a plethora of definitions, and informal use in the literature and in everyday life. It is common to say “I trust you, ” but what does that mean? T ..."
Abstract

Cited by 518 (5 self)
 Add to MetaCart
? This thesis provides a clarification of trust. We present a formalism for trust which provides us with a tool for precise discussion. The formalism is implementable: it can be embedded in an artificial agent, enabling the agent to make trustbased decisions. Its applicability in the domain of Distributed
Results 1  10
of
139,064