• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 2,204,423
Next 10 →

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 951 (12 self) - Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed

Model-Based Clustering, Discriminant Analysis, and Density Estimation

by Chris Fraley, Adrian E. Raftery - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract - Cited by 557 (28 self) - Add to MetaCart
for model-based clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster

Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections

by Douglass R. Cutting, David R. Karger, Jan O. Pedersen, John W. Tukey , 1992
"... Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably ..."
Abstract - Cited by 772 (12 self) - Add to MetaCart
improve retrieval. We argue that these problems arise only when clustering is used in an attempt to improve conventional search techniques. However, looking at clustering as an information access tool in its own right obviates these objections, and provides a powerful new access paradigm. We present a

Nonlinear Approximation

by Ronald A. DeVore - ACTA NUMERICA , 1998
"... ..."
Abstract - Cited by 970 (40 self) - Add to MetaCart
Abstract not found

Approximate Signal Processing

by S. Hamid Nawab, Alan V. Oppenheim, Anantha P. Chandrakasan, Joseph M. Winograd, Jeffrey T. Ludwig , 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract - Cited by 516 (2 self) - Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a

A formal basis for architectural connection

by Robert Allen, David Garlan - ACM TRANSACTIONS ON SOJIWARE ENGINEERING AND METHODOLOGY , 1997
"... ..."
Abstract - Cited by 791 (32 self) - Add to MetaCart
Abstract not found

A Digital Fountain Approach to Reliable Distribution of Bulk Data

by John W. Byers, Michael Luby, Michael Mitzenmacher, Ashutosh Rege - IN PROC. OF ACM SIGCOMM ’98 , 1998
"... The proliferation of applications that must reliably distribute bulk data to a large number of autonomous clients motivates the design of new multicast and broadcast prot.ocols. We describe an ideal, fully scalable protocol for these applications that we call a digital fountain. A digital fountain a ..."
Abstract - Cited by 498 (20 self) - Add to MetaCart
allows any number of heterogeneous clients to acquire bulk data with optimal efficiency at times of their choosing. Moreover, no feedback channels are needed to ensure reliable delivery, even in the face of high loss rates. We develop a protocol that closely approximates a digital fountain using a new

A Guided Tour to Approximate String Matching

by Gonzalo Navarro - ACM COMPUTING SURVEYS , 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract - Cited by 584 (38 self) - Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining

Knowledge-based Analysis of Microarray Gene Expression Data By Using Support Vector Machines

by Michael P. S. Brown, William Noble Grundy, David Lin, Nello Cristianini, Charles Walsh Sugnet, Terrence S. Furey, Manuel Ares, Jr., David Haussler , 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract - Cited by 514 (8 self) - Add to MetaCart
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge

Determining the Number of Factors in Approximate Factor Models

by Jushan Bai, Serena Ng , 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract - Cited by 538 (29 self) - Add to MetaCart
of the number of factors for configurations of the panel data encountered in practice. The idea that variations in a large number of economic variables can be modelled bya small number of reference variables is appealing and is used in manyeconomic analysis. In the finance literature, the arbitrage pricing
Next 10 →
Results 1 - 10 of 2,204,423
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University