Results 1  10
of
161,005
Approximability and Parameterized Complexity of Minmax Values
"... We consider approximating the minmax value of a multiplayer game in strategic form. Tightening recent bounds by Borgs et al., we observe that approximating the value with a precision of ɛ log n digits (for any constant ɛ > 0) is NPhard, where n is the size of the game. On the other hand, appro ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
, approximating the value with a precision of c log log n digits (for any constant c ≥ 1) can be done in quasipolynomial time. We consider the parameterized complexity of the problem, with the parameter being the number of pure strategies k of the player for which the minmax value is computed. We show
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Loopy Belief Propagation for Approximate Inference: An Empirical Study
 In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performa ..."
Abstract

Cited by 680 (18 self)
 Add to MetaCart
limit performance of "Turbo Codes"  codes whose decoding algorithm is equivalent to loopy belief propagation in a chainstructured Bayesian network. In this paper we ask: is there something special about the errorcorrecting code context, or does loopy propagation work as an approximate
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract

Cited by 497 (22 self)
 Add to MetaCart
We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and classifying dynamic behaviors, popular because they offer dynamic time warping, a training algorithm, and a clear Bayesian semantics. However, the Markovian framework makes strong restrictive assumptions about the system generating the signalthat it is a single process having a small number of states and an extremely limited state memory. The singleprocess model is often inappropriate for vision (and speech) applications, resulting in low ceilings on model performance. Coupled HMMs provide an efficient way to resolve many of these problems, and offer superior training speeds, model likelihoods, and robustness to initial conditions. 1. Introduction Computer vision is turning to problems...
A Volumetric Method for Building Complex Models from Range Images
, 1996
"... A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robus ..."
Abstract

Cited by 1018 (18 self)
 Add to MetaCart
A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scanconvert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a runlength encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the f...
EigenTracking: Robust Matching and Tracking of Articulated Objects Using a ViewBased Representation
 International Journal of Computer Vision
, 1998
"... This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image r ..."
Abstract

Cited by 656 (16 self)
 Add to MetaCart
This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image
CostAware WWW Proxy Caching Algorithms
 IN PROCEEDINGS OF THE 1997 USENIX SYMPOSIUM ON INTERNET TECHNOLOGY AND SYSTEMS
, 1997
"... Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through costaware caching. This paper introduces GreedyDualSize, which incorporates locality with cost and size concerns in a simple and nonparameterized fash ..."
Abstract

Cited by 544 (6 self)
 Add to MetaCart
Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through costaware caching. This paper introduces GreedyDualSize, which incorporates locality with cost and size concerns in a simple and nonparameterized
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract

Cited by 512 (32 self)
 Add to MetaCart
or differential equations, which are verified through computer simulations. The analysis provides convenient approximate or exact solutions as well as useful convergence time and growth ratio estimates. The paper recommends practical application of the analyses and suggests a number of paths for more detailed
Results 1  10
of
161,005