• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,086,686
Next 10 →

Applying Learning to Rank Techniques to Contextual Suggestions

by Julia Kiseleva, Alejandro Montes, García Yongming Luo, Jaap Kamps, Mykola Pechenizkiy, Paul De Bra
"... The Text Retrieval Conference’s Contextual Suggestion Track investigates search techniques for complex information needs that are highly dependent on a context and user interests. The goal of the track is to evaluate systems that provide suggestions for activities to users in a specific location, ta ..."
Abstract - Add to MetaCart
, tak-ing into account their historical personal preferences. In this paper, we present our approach for the Contextual Sugges-tion Track 2014. We suggest to treat the problem of Con-textual Suggestion as a Learning to Rank problem. As a source for travel suggestions we use data from four social

Learning to rank using gradient descent

by Chris Burges, Tal Shaked, Erin Renshaw, Matt Deeds, Nicole Hamilton, Greg Hullender - In ICML , 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract - Cited by 510 (17 self) - Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data

Topic-Sensitive PageRank

by Taher Haveliwala , 2002
"... In the original PageRank algorithm for improving the ranking of search-query results, a single PageRank vector is computed, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search resu ..."
Abstract - Cited by 535 (10 self) - Add to MetaCart
In the original PageRank algorithm for improving the ranking of search-query results, a single PageRank vector is computed, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search

Applied Nonparametric Regression

by Wolfgang Härdle , 1994
"... ..."
Abstract - Cited by 810 (10 self) - Add to MetaCart
Abstract not found

Rank Aggregation Methods for the Web

by Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar , 2010
"... We consider the problem of combining ranking results from various sources. In the context of the Web, the main applications include building meta-search engines, combining ranking functions, selecting documents based on multiple criteria, and improving search precision through word associations. Wed ..."
Abstract - Cited by 473 (6 self) - Add to MetaCart
. Wedevelop a set of techniques for the rank aggregation problem and compare their performance to that of well-known methods. A primary goal of our work is to design rank aggregation techniques that can effectively combat "spam," a serious problem in Web searches. Experiments show that our methods

Probabilistic Visual Learning for Object Representation

by Baback Moghaddam, Alex Pentland , 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of ..."
Abstract - Cited by 705 (15 self) - Add to MetaCart
-of-Gaussians model (for multimodal distributions). These probability densities are then used to formulate a maximum-likelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection

Text Chunking using Transformation-Based Learning

by Lance A. Ramshaw, Mitchell P. Marcus , 1995
"... Eric Brill introduced transformation-based learning and showed that it can do part-ofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including non-recursive "baseNP" chunks. For ..."
Abstract - Cited by 509 (0 self) - Add to MetaCart
Eric Brill introduced transformation-based learning and showed that it can do part-ofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including non-recursive "baseNP" chunks

Parallel Networks that Learn to Pronounce English Text

by Terrence J. Sejnowski, Charles R. Rosenberg - COMPLEX SYSTEMS , 1987
"... This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract - Cited by 548 (5 self) - Add to MetaCart
task, but differ completely at the levels of synaptic strengths and single-unit responses. However, hierarchical clustering techniques applied to NETtalk reveal that these different networks have similar internal representations of letter-to-sound correspondences within groups of processing units

Learning the Kernel Matrix with Semi-Definite Programming

by Gert R. G. Lanckriet, Nello Cristianini, Laurent El Ghaoui, Peter Bartlett, Michael I. Jordan , 2002
"... Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract - Cited by 780 (22 self) - Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied

Machine Learning in Automated Text Categorization

by Fabrizio Sebastiani - ACM COMPUTING SURVEYS , 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract - Cited by 1658 (22 self) - Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
Next 10 →
Results 1 - 10 of 1,086,686
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University