Results 1  10
of
1,685,469
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown
Nonnegative matrix factorization for polyphonic music transcription
 in Proc. IEEE Workshop Applications of Signal Processing to Audio and Acoustics
, 2003
"... In this paper we present a methodology for analyzing polyphonic musical passages comprised by notes that exhibit a harmonically fixed spectral profile (such as piano notes). Taking advantage of this unique note structure we can model the audio content of the musical passage by a linear basis transfo ..."
Abstract

Cited by 240 (14 self)
 Add to MetaCart
transform and use nonnegative matrix decomposition methods to estimate the spectral profile and the temporal information of every note. This approach results in a very simple and compact system that is not knowledge based, but rather learns notes by observation.
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
Powerlaw distributions in empirical data
 ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111
, 2009
"... Powerlaw distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and manmade phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
estimates for powerlaw data, based on maximum likelihood methods and the KolmogorovSmirnov statistic. We also show how to tell whether the data follow a powerlaw distribution at all, defining quantitative measures that indicate when the power law is a reasonable fit to the data and when it is not. We
Biclustering of Expression Data
, 2000
"... An efficient nodedeletion algorithm is introduced to find submatrices... ..."
Abstract

Cited by 591 (0 self)
 Add to MetaCart
An efficient nodedeletion algorithm is introduced to find submatrices...
Limma: linear models for microarray data
 Bioinformatics and Computational Biology Solutions using R and Bioconductor
, 2005
"... This free opensource software implements academic research by the authors and coworkers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents ..."
Abstract

Cited by 759 (13 self)
 Add to MetaCart
This free opensource software implements academic research by the authors and coworkers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents
Determining the Number of Factors in Approximate Factor Models
, 2000
"... In this paper we develop some statistical theory for factor models of large dimensions. The focus is the determination of the number of factors, which is an unresolved issue in the rapidly growing literature on multifactor models. We propose a panel Cp criterion and show that the number of factors c ..."
Abstract

Cited by 538 (29 self)
 Add to MetaCart
of the number of factors for configurations of the panel data encountered in practice. The idea that variations in a large number of economic variables can be modelled bya small number of reference variables is appealing and is used in manyeconomic analysis. In the finance literature, the arbitrage pricing
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Results 1  10
of
1,685,469