• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 139,364
Next 10 →

Anytime Belief Propagation Using Sparse Domains

by Sameer Singh, Sebastian Riedel, Andrew Mccallum
"... For marginal inference on graphical models, belief propagation (BP) has been the algorithm of choice due to impressive empirical results on many models. These models often contain many variables and factors, however the domain of each variable (the set of values that the variable can take) and the n ..."
Abstract - Add to MetaCart
For marginal inference on graphical models, belief propagation (BP) has been the algorithm of choice due to impressive empirical results on many models. These models often contain many variables and factors, however the domain of each variable (the set of values that the variable can take

Fusion, Propagation, and Structuring in Belief Networks

by Judea Pearl - ARTIFICIAL INTELLIGENCE , 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract - Cited by 482 (8 self) - Add to MetaCart
Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used

Good Error-Correcting Codes based on Very Sparse Matrices

by David J.C. MacKay , 1999
"... We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract - Cited by 741 (23 self) - Add to MetaCart
We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties

Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains

by David C. Plaut , James L. McClelland, Mark S. Seidenberg, Karalyn Patterson - PSYCHOLOGICAL REVIEW , 1996
"... We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract - Cited by 583 (94 self) - Add to MetaCart
We develop a connectionist approach to processing in quasi-regular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic

Propagation of Trust and Distrust

by R. Guha, Ravi Kumar, Prabhakar Raghavan, Andrew Tomkins , 2004
"... A network of people connected by directed ratings or trust scores, and a model for propagating those trust scores, is a fundamental building block in many of today's most successful e-commerce and recommendation systems. In eBay, such a model of trust has significant influence on the price an i ..."
Abstract - Cited by 431 (1 self) - Add to MetaCart
A network of people connected by directed ratings or trust scores, and a model for propagating those trust scores, is a fundamental building block in many of today's most successful e-commerce and recommendation systems. In eBay, such a model of trust has significant influence on the price

A Bayesian method for the induction of probabilistic networks from data

by Gregory F. Cooper, EDWARD HERSKOVITS - MACHINE LEARNING , 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract - Cited by 1381 (32 self) - Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction

Factor Graphs and the Sum-Product Algorithm

by Frank R. Kschischang, Brendan J. Frey, Hans-Andrea Loeliger - IEEE TRANSACTIONS ON INFORMATION THEORY , 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract - Cited by 1787 (72 self) - Add to MetaCart
be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.

An Architecture for Wide-Area Multicast Routing

by Stephen Deering , Deborah Estrin , Dino Farinacci , Van Jacobson , et al.
"... Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets or ..."
Abstract - Cited by 529 (22 self) - Add to MetaCart
Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 586 (13 self) - Add to MetaCart
. Second, there must be some way of choosing internal representations which allow the preexisting hardware connections to be used efficiently for encoding the con-straints in the domain being searched. We describe a generol parallel search method, based on statistical mechanics, and we show how it leads

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics

by Geir Evensen - J. Geophys. Res , 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract - Cited by 782 (22 self) - Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter
Next 10 →
Results 1 - 10 of 139,364
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University