Results 1  10
of
397,046
knearest neighbor estimation of entropies with confidence
, 2011
"... We analyze a knearest neighbor (kNN) class of plugin estimators for estimating Shannon entropy and Rényi entropy. Based on the statistical properties of kNN balls, we derive explicit rates for the bias and variance of these plugin estimators in terms of the sample size, the dimension of the sam ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
We analyze a knearest neighbor (kNN) class of plugin estimators for estimating Shannon entropy and Rényi entropy. Based on the statistical properties of kNN balls, we derive explicit rates for the bias and variance of these plugin estimators in terms of the sample size, the dimension
Optimal MultiStep kNearest Neighbor Search
, 1998
"... For an increasing number of modern database applications, efficient support of similarity search becomes an important task. Along with the complexity of the objects such as images, molecules and mechanical parts, also the complexity of the similarity models increases more and more. Whereas algorithm ..."
Abstract

Cited by 199 (23 self)
 Add to MetaCart
, and our investigations substantiate that the number of candidates which are produced in the filter step and exactly evaluated in the refinement step is a fundamental efficiency parameter. After revealing the strong performance shortcomings of the stateoftheart algorithm for knearest neighbor search
Distance Browsing in Spatial Databases
, 1999
"... Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k is kn ..."
Abstract

Cited by 390 (20 self)
 Add to MetaCart
Two different techniques of browsing through a collection of spatial objects stored in an Rtree spatial data structure on the basis of their distances from an arbitrary spatial query object are compared. The conventional approach is one that makes use of a knearest neighbor algorithm where k
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 448 (2 self)
 Add to MetaCart
nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these high
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
kNearest Neighbors in Uncertain Graphs
"... Complex networks, such as biological, social, and communication networks, often entail uncertainty, and thus, can be modeled as probabilistic graphs. Similar to the problem of similarity search in standard graphs, a fundamental problem for probabilistic graphs is to efficiently answer knearest neig ..."
Abstract

Cited by 31 (4 self)
 Add to MetaCart
Complex networks, such as biological, social, and communication networks, often entail uncertainty, and thus, can be modeled as probabilistic graphs. Similar to the problem of similarity search in standard graphs, a fundamental problem for probabilistic graphs is to efficiently answer knearest
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
, capitalization, formatting, partofspeech), and defines the conditional probability of state sequences given observation sequences. It does this by using the maximum entropy framework to fit a set of exponential models that represent the probability of a state given an observation and the previous state. We
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
Predicting Internet Network Distance with CoordinatesBased Approaches
 In INFOCOM
, 2001
"... In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract

Cited by 633 (5 self)
 Add to MetaCart
In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which
Results 1  10
of
397,046