• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,480,574
Next 10 →

Qualitative process theory

by Kenneth D. Forbus - MIT AI Lab Memo , 1982
"... Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well ..."
Abstract - Cited by 884 (92 self) - Add to MetaCart
Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well

Approximate Signal Processing

by S. Hamid Nawab, Alan V. Oppenheim, Anantha P. Chandrakasan, Joseph M. Winograd, Jeffrey T. Ludwig , 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract - Cited by 516 (2 self) - Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing

A Sense of Self for Unix Processes

by Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, Thomas A. Longstaff - In Proceedings of the 1996 IEEE Symposium on Security and Privacy , 1996
"... A method for anomaly detection is introduced in which "normal" is defined by short-range correlations in a process ' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common ..."
Abstract - Cited by 684 (29 self) - Add to MetaCart
A method for anomaly detection is introduced in which "normal" is defined by short-range correlations in a process ' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common

Controlled and automatic human information processing

by Walter Schneider, Richard M. Shiffrin - I. Detection, search, and attention. Psychological Review , 1977
"... A two-process theory of human information processing is proposed and applied to detection, search, and attention phenomena. Automatic processing is activa-tion of a learned sequence of elements in long-term memory that is initiated by appropriate inputs and then proceeds automatically—without subjec ..."
Abstract - Cited by 841 (15 self) - Add to MetaCart
A two-process theory of human information processing is proposed and applied to detection, search, and attention phenomena. Automatic processing is activa-tion of a learned sequence of elements in long-term memory that is initiated by appropriate inputs and then proceeds automatically

Probabilistic Principal Component Analysis

by Michael E. Tipping, Chris M. Bishop - Journal of the Royal Statistical Society, Series B , 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of paramet ..."
Abstract - Cited by 703 (5 self) - Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation

Modeling Strategic Relationships for Process Reengineering

by Eric Siu-kwong Yu , 1995
"... Existing models for describing a process (such as a business process or a software development process) tend to focus on the \what " or the \how " of the process. For example, a health insurance claim process would typically be described in terms of a number of steps for assessing and appr ..."
Abstract - Cited by 545 (40 self) - Add to MetaCart
Existing models for describing a process (such as a business process or a software development process) tend to focus on the \what " or the \how " of the process. For example, a health insurance claim process would typically be described in terms of a number of steps for assessing

The Valuation of Options for Alternative Stochastic Processes

by John C. Cox, Stephen A. Ross - Journal of Financial Economics , 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract - Cited by 661 (4 self) - Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas

Distributed hierarchical processing in the primate cerebral cortex

by Daniel J. Felleman, David C. Van Essen - Cereb Cortex , 1991
"... In recent years, many new cortical areas have been identified in the macaque monkey. The number of identified connections between areas has increased even more dramatically. We report here on (1) a summary of the layout of cortical areas associated with vision and with other modalities, (2) a comput ..."
Abstract - Cited by 901 (6 self) - Add to MetaCart
computerized database for storing and representing large amounts of information on connectivity patterns, and (3) the application of these data to the analysis of hierarchical organization of the cerebral cortex. Our analysis concentrates on the visual system, which includes 25 neocortical areas

Convex Analysis

by R. Tyrrell Rockafellar , 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract - Cited by 5350 (67 self) - Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a

Survey on Independent Component Analysis

by Aapo Hyvärinen - NEURAL COMPUTING SURVEYS , 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract - Cited by 2241 (104 self) - Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
Next 10 →
Results 1 - 10 of 1,480,574
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University