• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 341,567
Next 10 →

Spectrum estimation and harmonic analysis

by David J. Thomson , 1982
"... Abstmct-In the choice of an eduutor for the spectnrm of a ation- ..."
Abstract - Cited by 438 (3 self) - Add to MetaCart
Abstmct-In the choice of an eduutor for the spectnrm of a ation-

Multiresolution Analysis of Arbitrary Meshes

by Matthias Eck , Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, Werner Stuetzle , 1995
"... In computer graphics and geometric modeling, shapes are often represented by triangular meshes. With the advent of laser scanning systems, meshes of extreme complexity are rapidly becoming commonplace. Such meshes are notoriously expensive to store, transmit, render, and are awkward to edit. Multire ..."
Abstract - Cited by 605 (16 self) - Add to MetaCart
. Multiresolution analysis offers a simple, unified, and theoretically sound approach to dealing with these problems. Lounsbery et al. have recently developed a technique for creating multiresolution representations for a restricted class of meshes with subdivision connectivity. Unfortunately, meshes encountered

Convex Analysis

by R. Tyrrell Rockafellar , 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract - Cited by 5350 (67 self) - Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a

A Practical Guide to Wavelet Analysis

by Christopher Torrence, Gilbert P. Compo , 1998
"... A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nio-- Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite-length t ..."
Abstract - Cited by 833 (3 self) - Add to MetaCart
A practical step-by-step guide to wavelet analysis is given, with examples taken from time series of the El Nio-- Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite

EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

by Arnaud Delorme, Scott Makeig - J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the cross-platform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract - Cited by 836 (44 self) - Add to MetaCart
information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decompositions including channel

The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets

by Ann Chervenak , Ian Foster, Carl Kesselman, Charles Salisbury, Steven Tuecke - JOURNAL OF NETWORK AND COMPUTER APPLICATIONS , 1999
"... In an increasing number of scientific disciplines, large data collections are emerging as important community resources. In this paper, we introduce design principles for a data management architecture called the Data Grid. We describe two basic services that we believe are fundamental to the des ..."
Abstract - Cited by 469 (42 self) - Add to MetaCart
In an increasing number of scientific disciplines, large data collections are emerging as important community resources. In this paper, we introduce design principles for a data management architecture called the Data Grid. We describe two basic services that we believe are fundamental to the design of a data grid, namely, storage systems and metadata management. Next, we explain how these services can be used to develop higher-level services for replica management and replica selection. We conclude by describing our initial implementation of data grid functionality.

Fast Folding and Comparison of RNA Secondary Structures (The Vienna RNA Package)

by Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, L. Sebastian Bonhoeffer, Manfred Tacker, Peter Schuster
"... Computer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions and bas ..."
Abstract - Cited by 812 (119 self) - Add to MetaCart
implementations of modified algorithms on parallel computers with distributed memory. Performance analysis carried out on an Intel Hypercube shows that parallel computing becomes gradually more and more efficient the longer the sequences are.

Directed Diffusion for Wireless Sensor Networking

by Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, Fabio Silva - IEEE/ACM Transactions on Networking , 2003
"... Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm for such ..."
Abstract - Cited by 658 (9 self) - Add to MetaCart
Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm

Lambertian Reflectance and Linear Subspaces

by Ronen Basri, David Jacobs , 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract - Cited by 514 (20 self) - Add to MetaCart
wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace, explaining prior empirical results. We also provide a simple analytic characterization of this linear space. We obtain these results by representing lighting using spherical harmonics and describing

Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations

by Jure Leskovec, Jon Kleinberg, Christos Faloutsos , 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract - Cited by 534 (48 self) - Add to MetaCart
heavy tails for in- and out-degree distributions, communities, small-world phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs
Next 10 →
Results 1 - 10 of 341,567
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University