• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 585,474
Next 10 →

Evolving Neural Networks through Augmenting Topologies

by Kenneth O. Stanley, Risto Miikkulainen - Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task ..."
Abstract - Cited by 524 (113 self) - Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning

A Learning Algorithm for Continually Running Fully Recurrent Neural Networks

by Ronald J. Williams, David Zipser , 1989
"... The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract - Cited by 529 (4 self) - Add to MetaCart
the retention of information over time periods having either fixed or indefinite length. 1 Introduction A major problem in connectionist theory is to develop learning algorithms that can tap the full computational power of neural networks. Much progress has been made with feedforward networks, and attention

A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm

by Martin Riedmiller, Heinrich Braun - IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS , 1993
"... A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive tech ..."
Abstract - Cited by 917 (34 self) - Add to MetaCart
A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive

Reinforcement Learning I: Introduction

by Richard S. Sutton, Andrew G. Barto , 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract - Cited by 5500 (120 self) - Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection

Parallel Networks that Learn to Pronounce English Text

by Terrence J. Sejnowski, Charles R. Rosenberg - COMPLEX SYSTEMS , 1987
"... This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract - Cited by 548 (5 self) - Add to MetaCart
This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed

Overcast: Reliable Multicasting with an Overlay Network

by John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, James W. O'Toole, Jr. , 2000
"... Overcast is an application-level multicasting system that can be incrementally deployed using today's Internet infrastructure. These properties stem from Overcast's implementation as an overlay network. An overlay network consists of a collection of nodes placed at strategic locations in a ..."
Abstract - Cited by 563 (10 self) - Add to MetaCart
Overcast is an application-level multicasting system that can be incrementally deployed using today's Internet infrastructure. These properties stem from Overcast's implementation as an overlay network. An overlay network consists of a collection of nodes placed at strategic locations

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 586 (13 self) - Add to MetaCart
The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a

Gaussian processes for machine learning

by Carl Edward Rasmussen - in: Adaptive Computation and Machine Learning , 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract - Cited by 631 (2 self) - Add to MetaCart
power, and their more complex counterparts (such as feed forward neural networks) may not be easy to work with

Locally weighted learning

by Christopher G. Atkeson, Andrew W. Moore , Stefan Schaal - ARTIFICIAL INTELLIGENCE REVIEW , 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract - Cited by 594 (53 self) - Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias

Bayesian Network Classifiers

by Nir Friedman, Dan Geiger, Moises Goldszmidt , 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract - Cited by 788 (23 self) - Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Next 10 →
Results 1 - 10 of 585,474
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University