Results 1  10
of
55,559
An improved approximation algorithm for the 0extension problem
 In 14th Annual ACMSIAM Symposium on Discrete Algorithms
, 2003
"... Abstract Given a graph G = (V, E), a set of terminals T ` V, anda metric D on T, the 0extension problem is to assignvertices in V to terminals, so that the sum, over all edges e, of the distance (under D) between the terminals towhich the end points of e are assigned, is minimized.This problem was ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
Abstract Given a graph G = (V, E), a set of terminals T ` V, anda metric D on T, the 0extension problem is to assignvertices in V to terminals, so that the sum, over all edges e, of the distance (under D) between the terminals towhich the end points of e are assigned, is minimized.This problem
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1211 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 585 (13 self)
 Add to MetaCart
Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
, 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract

Cited by 708 (19 self)
 Add to MetaCart
The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 560 (0 self)
 Add to MetaCart
This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 916 (9 self)
 Add to MetaCart
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 455 (2 self)
 Add to MetaCart
dimensional problems that are faster than linear search. Approximate algorithms are known to provide large speedups with only minor loss in accuracy, but many such algorithms have been published with only minimal guidance on selecting an algorithm and its parameters for any given problem. In this paper, we describe a
Improving generalization with active learning
 Machine Learning
, 1994
"... Abstract. Active learning differs from "learning from examples " in that the learning algorithm assumes at least some control over what part of the input domain it receives information about. In some situations, active learning is provably more powerful than learning from examples ..."
Abstract

Cited by 544 (1 self)
 Add to MetaCart
alone, giving better generalization for a fixed number of training examples. In this article, we consider the problem of learning a binary concept in the absence of noise. We describe a formalism for active concept learning called selective sampling and show how it may be approximately implemented by a
Fibonacci Heaps and Their Uses in Improved Network optimization algorithms
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized tim ..."
Abstract

Cited by 739 (18 self)
 Add to MetaCart
matching), improved from O(nm log0dn+2)n); (4) O(mj3(m, n)) for the minimum spanning tree problem, improved from O(mloglo&,,.+2,n), where j3(m, n) = min {i 1 log % 5 m/n). Note that B(m, n) 5 log*n if m 2 n. Of these results, the improved bound for minimum spanning trees is the most striking, although
Results 1  10
of
55,559