• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 491,692
Next 10 →

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

by Eric Bauer, Ron Kohavi - MACHINE LEARNING , 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract - Cited by 695 (2 self) - Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review these algorithms and describe a large empirical study comparing several variants

An extensive empirical study of feature selection metrics for text classification

by George Forman, Isabelle Guyon, André Elisseeff - J. of Machine Learning Research , 2003
"... Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison ..."
Abstract - Cited by 483 (15 self) - Add to MetaCart
Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison

Noise Trader Risk in Financial Markets

by J. Bradford Delong, J. Bradford, De Long, Andrei Shleifer, Lawrence H. Summers, Robert J. Waldmann - Jolurnial of Political Economy , 1990
"... We present a simple overlapping generations model of an asset market in which irrational noise traders with erroneous stochastic beliefs both affect prices and earn higher expected returns. The unpredictability of noise traders ’ beliefs creates a risk in the price of the asset that deters rational ..."
Abstract - Cited by 858 (23 self) - Add to MetaCart
We present a simple overlapping generations model of an asset market in which irrational noise traders with erroneous stochastic beliefs both affect prices and earn higher expected returns. The unpredictability of noise traders ’ beliefs creates a risk in the price of the asset that deters rational

Comparison of Multiobjective Evolutionary Algorithms: Empirical Results

by Eckart Zitzler, Lothar Thiele, Kalyanmoy Deb , 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract - Cited by 605 (39 self) - Add to MetaCart
in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand

Large Margin Classification Using the Perceptron Algorithm

by Yoav Freund, Robert E. Schapire - Machine Learning , 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leave-one-out method. Like Vapnik 's maximal-margin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract - Cited by 518 (2 self) - Add to MetaCart
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leave-one-out method. Like Vapnik 's maximal-margin classifier, our algorithm takes advantage of data that are linearly separable

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning

Financial Dependence and Growth

by Raghuram G. Rajan, Luigi Zingales - American Economic Review , 1998
"... This paper examines whether nancial development facilitates economic growth by scrutinizing one rationale for such a relationship; that nancial development reduces the costs of external nance to rms. Speci cally, we ask whether industrial sectors that are relatively more in need of external nance de ..."
Abstract - Cited by 1043 (29 self) - Add to MetaCart
to the highest value use without substantial risk of loss through moral hazard, adverse selection, or transactions costs { are an essential catalyst of economic growth. Empirical work seems consistent with this argument. For example, on the

The CN2 Induction Algorithm

by Peter Clark , Tim Niblett - MACHINE LEARNING , 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract - Cited by 884 (6 self) - Add to MetaCart
Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple

Financial Intermediation and Growth: Causality and Causes

by Ross Levine, Norman Loayza, Thorsten Beck - JOURNAL OF MONETARY ECONOMICS , 2000
"... This paper evaluates (1) whether the exogenous component of financial intermediary development influences economic growth and (2) whether cross-country differences in legal and accounting systems (e.g., creditor rights, contract enforcement, and accounting standards) explain differences in the level ..."
Abstract - Cited by 788 (71 self) - Add to MetaCart
This paper evaluates (1) whether the exogenous component of financial intermediary development influences economic growth and (2) whether cross-country differences in legal and accounting systems (e.g., creditor rights, contract enforcement, and accounting standards) explain differences

Instance-based learning algorithms

by David W. Aha, Dennis Kibler, Marc K. Albert - Machine Learning , 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract - Cited by 1359 (18 self) - Add to MetaCart
to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instance-based learning, that generates classification predictions using only specific instances. Instance-based learning algorithms do not maintain a set of abstractions derived from specific instances
Next 10 →
Results 1 - 10 of 491,692
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University