Results 1  10
of
751,120
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
The Quickhull algorithm for convex hulls
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1996
"... The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental algo ..."
Abstract

Cited by 711 (0 self)
 Add to MetaCart
The convex hull of a set of points is the smallest convex set that contains the points. This article presents a practical convex hull algorithm that combines the twodimensional Quickhull Algorithm with the generaldimension BeneathBeyond Algorithm. It is similar to the randomized, incremental
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 783 (76 self)
 Add to MetaCart
to linear hybrid systems. In particular, we consider symbolic modelchecking and minimization procedures that are based on the reachability analysis of an infinite state space. The procedures iteratively compute state sets that are definable as unions of convex polyhedra in multidimensional real space. We
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong
Instancebased learning algorithms
 Machine Learning
, 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract

Cited by 1359 (18 self)
 Add to MetaCart
Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties
 J. Alg. Geom
, 1994
"... We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined by ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined by a Newton polyhedron ∆ consists of (n − 1)dimensional CalabiYau varieties then the dual, or polar, polyhedron ∆ ∗ in the dual space defines another family F( ∆ ∗ ) of CalabiYau varieties, so that we obtain the remarkable duality between two different families of CalabiYau varieties. It is shown that the properties of this duality coincide with the properties of Mirror Symmetry discovered by physicists for CalabiYau 3folds. Our method allows to construct many new examples of CalabiYau 3folds and new candidates for their mirrors which were previously unknown for physicists. We conjecture that there exists an isomorphism between two conformal field theories corresponding to CalabiYau varieties from two families F(∆) and F( ∆ ∗). 1
Results 1  10
of
751,120