Results 1  10
of
1,754,167
Robust adaptivescale parametric model estimation for computer vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... Robust model fitting essentially requires the application of two estimators. The first is an estimator for the values of the model parameters. The second is an estimator for the scale of the noise in the (inlier) data. Indeed, we propose two novel robust techniques: the TwoStep Scale estimator (TSS ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
(TSSE) and the Adaptive Scale Sample Consensus (ASSC) estimator. TSSE applies nonparametric density estimation and density gradient estimation techniques, to robustly estimate the scale of the inliers. The ASSC estimator combines Random Sample Consensus (RANSAC) and TSSE: using a modified objective
Hierarchical modelbased motion estimation
, 1992
"... This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel that ..."
Abstract

Cited by 667 (15 self)
 Add to MetaCart
This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 826 (88 self)
 Add to MetaCart
), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm
EigenTracking: Robust Matching and Tracking of Articulated Objects Using a ViewBased Representation
 International Journal of Computer Vision
, 1998
"... This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image r ..."
Abstract

Cited by 656 (16 self)
 Add to MetaCart
This paper describes an approach for tracking rigid and articulated objects using a viewbased representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the leastsquares image
Estimating Wealth Effects without Expenditure Data— or Tears
 Policy Research Working Paper 1980, The World
, 1998
"... Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled closely ..."
Abstract

Cited by 832 (16 self)
 Add to MetaCart
Abstract: We use the National Family Health Survey (NFHS) data collected in Indian states in 1992 and 1993 to estimate the relationship between household wealth and the probability a child (aged 6 to 14) is enrolled in school. A methodological difficulty to overcome is that the NFHS, modeled
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
A Survey of Computer VisionBased Human Motion Capture
 Computer Vision and Image Understanding
, 2001
"... A comprehensive survey of computer visionbased human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each ..."
Abstract

Cited by 508 (14 self)
 Add to MetaCart
A comprehensive survey of computer visionbased human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
Robust fitting by adaptivescale residual consensus
 In ECCV
, 2004
"... Abstract. Computer vision tasks often require the robust fit of a model to some data. In a robust fit, two major steps should be taken: i) robustly estimate the parameters of a model, and ii) differentiate inliers from outliers. We propose a new estimator called AdaptiveScale Residual Consensus (AS ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Abstract. Computer vision tasks often require the robust fit of a model to some data. In a robust fit, two major steps should be taken: i) robustly estimate the parameters of a model, and ii) differentiate inliers from outliers. We propose a new estimator called AdaptiveScale Residual Consensus
Results 1  10
of
1,754,167