• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 2,255,934
Next 10 →

The Extended Linear Complementarity Problem

by O. L. Mangasarian, Jong-Shi Pang , 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract - Cited by 776 (28 self) - Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity

Mining the Network Value of Customers

by Pedro Domingos, Matt Richardson - In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining , 2002
"... One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only ..."
Abstract - Cited by 562 (11 self) - Add to MetaCart
as a set of independent entities, we view it as a social network and model it as a Markov random eld. We show the advantages of this approach using a social network mined from a collaborative ltering database. Marketing that exploits the network value of customers|also known as viral marketing

Mining Generalized Association Rules

by Ramakrishnan Srikant, Rakesh Agrawal , 1995
"... We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (is-a hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy th ..."
Abstract - Cited by 577 (7 self) - Add to MetaCart
solution to the problem is to add all ancestors of each item in a transaction to the transaction, and then run any of the algorithms for mining association rules on these "extended transactions ". However, this "Basic" algorithm is not very fast; we present two algorithms, Cumulate

Possessions and the Extended Self

by Russell W. Belk - Journal of Consumer Research , 1988
"... Our possessions are a major contributor to and reflection of our identities. A variety of evidence is presented supporting this simple and compelling premise. Related streans of research are identified and drawn upon in devetopJng this concept and implications are derived for consumer behavior. Beca ..."
Abstract - Cited by 544 (2 self) - Add to MetaCart
Our possessions are a major contributor to and reflection of our identities. A variety of evidence is presented supporting this simple and compelling premise. Related streans of research are identified and drawn upon in devetopJng this concept and implications are derived for consumer behavior. Because the construct of exterxJed self involves consumer behavior rather than buyer behavior. It apjpears to be a much richer construct than previous formulations positing a relationship between self-concept and consumer brand choice. Hollow hands clasp ludicrous possessions because they are links in the chain of life If it breaks, they are truly losL—Dichlsr \ 964 W e cannot hope to understand consumer behav-ior without first gaining some understanding of ihe meanings that consumers attach to possessions..• \ key to understanding what possessions mean is rec-ognizing thai, knowingly or unknowingly, intention-ally or unintentionally, we regard our possessions as parts of ourselves. As Tuan argues, "Our fragile sense

Privacy Preserving Data Mining

by Yehuda Lindell, Benny Pinkas - JOURNAL OF CRYPTOLOGY , 2000
"... In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated b ..."
Abstract - Cited by 512 (8 self) - Add to MetaCart
In this paper we address the issue of privacy preserving data mining. Specifically, we consider a scenario in which two parties owning confidential databases wish to run a data mining algorithm on the union of their databases, without revealing any unnecessary information. Our work is motivated

Fast Algorithms for Mining Association Rules

by Rakesh Agrawal, Ramakrishnan Srikant , 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract - Cited by 3551 (15 self) - Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known

The Elements of Statistical Learning -- Data Mining, Inference, and Prediction

by Trevor Hastie, Robert Tibshirani, Jerome Friedman
"... ..."
Abstract - Cited by 1320 (13 self) - Add to MetaCart
Abstract not found

Constrained model predictive control: Stability and optimality

by D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert - AUTOMATICA , 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract - Cited by 696 (15 self) - Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence

Mining Sequential Patterns

by Rakesh Agrawal, Ramakrishnan Srikant , 1995
"... We are given a large database of customer transactions, where each transaction consists of customer-id, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empiri ..."
Abstract - Cited by 1534 (7 self) - Add to MetaCart
We are given a large database of customer transactions, where each transaction consists of customer-id, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem

Mining Sequential Patterns: Generalizations and Performance Improvements

by Ramakrishnan Srikant, Rakesh Agrawal - Research Report RJ 9994, IBM Almaden Research , 1995
"... Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transaction-time, and each transaction is a set of items. The problem is to discover all sequential patterns with a user- ..."
Abstract - Cited by 748 (5 self) - Add to MetaCart
Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transaction-time, and each transaction is a set of items. The problem is to discover all sequential patterns with a user
Next 10 →
Results 1 - 10 of 2,255,934
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2018 The Pennsylvania State University