Results 1  10
of
3,130,741
Probabilistic Principal Component Analysis
 Journal of the Royal Statistical Society, Series B
, 1999
"... Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation of paramet ..."
Abstract

Cited by 703 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximumlikelihood estimation
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
maximumlikelihood framework, based on a specific form of Gaussian latent variable model. This leads to a welldefined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context
Hierarchical Models of Object Recognition in Cortex
, 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract

Cited by 817 (84 self)
 Add to MetaCart
the biological feasibility of this class of models to explain higher level visual processing, such as object recognition. We describe a new hierarchical model that accounts well for this complex visual task, is consistent with several recent physiological experiments in inferotemporal cortex and makes testable
Refactoring ObjectOriented Frameworks
, 1992
"... This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of objectoriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings are defin ..."
Abstract

Cited by 482 (4 self)
 Add to MetaCart
This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of objectoriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings
Object exchange across heterogeneous information sources
 INTERNATIONAL CONFERENCE ON DATA ENGINEERING
, 1995
"... We address the problem of providing integrated access to diverse and dynamic information sources. We explain how this problem differs from the traditional database integration problem and we focus on one aspect of the information integration problem, namely information exchange. We define an object ..."
Abstract

Cited by 513 (57 self)
 Add to MetaCart
We address the problem of providing integrated access to diverse and dynamic information sources. We explain how this problem differs from the traditional database integration problem and we focus on one aspect of the information integration problem, namely information exchange. We define an objectbased
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 880 (64 self)
 Add to MetaCart
that come from objectoriented programming have direct representation in Flogic; other, secondary aspects of this paradigm are easily modeled as well. The paper also discusses semantic issues pertaining to programming with a deductive objectoriented language based on a subset of Flogic.
A Theory of Objects
, 1996
"... Objectoriented languages were invented to provide an intuitive view of data and computation, by drawing an analogy between software and the physical world of objects. The detailed explanation of this intuition, however, turned out to be quite complex; there are still no standard definitions of such ..."
Abstract

Cited by 1002 (13 self)
 Add to MetaCart
of such fundamental notions as objects, classes, and inheritance. Much progress was made by investigating the notion of subtyping within procedural languages and their theoretical models (lambda calculi). These studies clarified the role of subtyping in objectoriented languages, but still relied on complex encodings
KernelBased Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatiallysmooth similarity fu ..."
Abstract

Cited by 889 (4 self)
 Add to MetaCart
A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatiallysmooth similarity
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Results 1  10
of
3,130,741