Results 1  10
of
627,624
Iterative refinement for illconditioned linear systems
 Jpn. J. Indust. Appl. Math
, 2009
"... In this paper, we will consider the convergence of iterative refinement for a linear equation Av = b, (1) where A ∈ Fn×n and b ∈ Fn. Here, F is a set of floating point numbers. Let u be the unit roundoff of the working precision and κ(A) = ∥A∥∞∥A−1∥ ∞ be the condition number of the ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In this paper, we will consider the convergence of iterative refinement for a linear equation Av = b, (1) where A ∈ Fn×n and b ∈ Fn. Here, F is a set of floating point numbers. Let u be the unit roundoff of the working precision and κ(A) = ∥A∥∞∥A−1∥ ∞ be the condition number of the
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1055 (8 self)
 Add to MetaCart
We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast
An iterative image registration technique with an application to stereo vision
 In IJCAI81
, 1981
"... Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton ..."
Abstract

Cited by 2872 (35 self)
 Add to MetaCart
Raphson iteration. Our technique is faster because it examines far fewer potential matches between the images than existing techniques. Furthermore, this registration technique can be generalized to handle rotation, scaling and shearing. We show show our technique can be adapted for use in a stereo vision system. 2
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 659 (7 self)
 Add to MetaCart
A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately
LeastSquares Policy Iteration
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract

Cited by 461 (12 self)
 Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Results 1  10
of
627,624