Results 1  10
of
578,833
An Improved Approximation Algorithm for Maximum Edge 2Coloring in Simple Graphs ∗
"... We present a polynomialtime approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of 468 ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We present a polynomialtime approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of 468
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussiansmoothed image. We extend this simple detector using operators of several widths to cope
Active Contours without Edges
, 2001
"... In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy ..."
Abstract

Cited by 1188 (37 self)
 Add to MetaCart
of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Results 1  10
of
578,833