Results 1  10
of
2,132,098
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
the sequences and e ciently answer similarity queries. We provide experimental results which show that our method is superior to search based on sequential scanning. Our experiments show that a few coefficients (13) are adequate to provide good performance. The performance gain of our method increases
TABU SEARCH
"... Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallm ..."
Abstract

Cited by 790 (44 self)
 Add to MetaCart
algorithms based on the tabu search. The experimentation shows that the procedures provide high quality solutions to the training problem, and in addition consume a reasonable computational effort.
Chaff: Engineering an Efficient SAT Solver
, 2001
"... Boolean Satisfiability is probably the most studied of combinatorial optimization/search problems. Significant effort has been devoted to trying to provide practical solutions to this problem for problem instances encountered in a range of applications in Electronic Design Automation (EDA), as well ..."
Abstract

Cited by 1346 (17 self)
 Add to MetaCart
Boolean Satisfiability is probably the most studied of combinatorial optimization/search problems. Significant effort has been devoted to trying to provide practical solutions to this problem for problem instances encountered in a range of applications in Electronic Design Automation (EDA), as well
An Efficient Solution to the FivePoint Relative Pose Problem
, 2004
"... An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre ..."
Abstract

Cited by 475 (12 self)
 Add to MetaCart
An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
required by earlier algorithms. First, the paper states the maximum flow problem, gives the FordFulkerson labeling method for its solution, and points out that an improper choice of flow augmenting paths can lead to severe computational difficulties. Then rules of choice that avoid these difficulties
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
of a solution changes abruptly from near 0 to near 1. It is the high density of wellseparated almost solutions (local minima) at this boundary that cause search algorithms to "thrash". This boundary is a type of phase transition and we show that it is preserved under mappings between
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 702 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minimization strategy. We enumerate and classify many of these variants, and evaluate their effect on the speed with which the correct alignment is reached. In order to improve convergence for nearlyflat meshes with small features, such as inscribed surfaces, we introduce a new variant based on uniform sampling of the space of normals. We conclude by proposing a combination of ICP variants optimized for high speed. We demonstrate an implementation that is able to align two range images in a few tens of milliseconds, assuming a good initial guess. This capability has potential application to realtime 3D model acquisition and modelbased tracking.
Implementing data cubes efficiently
 In SIGMOD
, 1996
"... Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total ..."
Abstract

Cited by 545 (1 self)
 Add to MetaCart
Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total sales. The values of many of these cells are dependent on the values of other cells in the data cube..A common and powerful query optimization technique is to materialize some or all of these cells rather than compute them from raw data each time. Commercial systems differ mainly in their approach to materializing the data cube. In this paper, we investigate the issue of which cells (views) to materialize when it is too expensive to materialize all views. A lattice framework is used to express dependencies among views. We present greedy algorithms that work off this lattice and determine a good set of views to materialize. The greedy algorithm performs within a small constant factor of optimal under a variety of models. We then consider the most common case of the hypercube lattice and examine the choice of materialized views for hypercubes in detail, giving some good tradeoffs between the space used and the average time to answer a query. 1
Results 1  10
of
2,132,098