Results 1  10
of
485,508
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 549 (0 self)
 Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear
Efficient randomized patternmatching algorithms
, 1987
"... We present randomized algorithms to solve the
following stringmatching problem and some of its generalizations: Given a string X of length n (the pattern) and a string Y (the text), find the first occurrence of X as a consecutive block within Y. The algorithms represent strings of length n by much ..."
Abstract

Cited by 397 (1 self)
 Add to MetaCart
We present randomized algorithms to solve the
following stringmatching problem and some of its generalizations: Given a string X of length n (the pattern) and a string Y (the text), find the first occurrence of X as a consecutive block within Y. The algorithms represent strings of length n
Mining Sequential Patterns
, 1995
"... We are given a large database of customer transactions, where each transaction consists of customerid, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empiri ..."
Abstract

Cited by 1534 (7 self)
 Add to MetaCart
We are given a large database of customer transactions, where each transaction consists of customerid, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new
Mining Frequent Patterns without Candidate Generation: A FrequentPattern Tree Approach
 DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, timeseries databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriorilike candidate set generationandtest approach. However, candidate set generation is still co ..."
Abstract

Cited by 1700 (64 self)
 Add to MetaCart
costly, especially when there exist a large number of patterns and/or long patterns. In this study, we propose a novel
frequentpattern tree
(FPtree) structure, which is an extended prefixtree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FPtree
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Clustering Gene Expression Patterns
, 1999
"... Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the ana ..."
Abstract

Cited by 446 (11 self)
 Add to MetaCart
in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining
Fast subsequence matching in timeseries databases
 PROCEEDINGS OF THE 1994 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1994
"... We present an efficient indexing method to locate 1dimensional subsequences within a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space ..."
Abstract

Cited by 528 (24 self)
 Add to MetaCart
We present an efficient indexing method to locate 1dimensional subsequences within a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature
The pyramid match kernel: Discriminative classification with sets of image features
 IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract

Cited by 546 (29 self)
 Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multiresolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear
Results 1  10
of
485,508