Results 1  10
of
462,062
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Finite state Markovchain approximations to univariate and vector autoregressions
 Economics Letters
, 1986
"... The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1. ..."
Abstract

Cited by 472 (0 self)
 Add to MetaCart
The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1.
Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms
, 2002
"... We describe new algorithms for training tagging models, as an alternative to maximumentropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a modific ..."
Abstract

Cited by 641 (16 self)
 Add to MetaCart
We describe new algorithms for training tagging models, as an alternative to maximumentropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1330 (24 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
based methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown
Hidden Markov processes
 IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite ..."
Abstract

Cited by 258 (5 self)
 Add to MetaCart
Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite
The deviation matrix of a continuoustime Markov chain
, 2001
"... The deviation matrix of an ergodic, continuoustime Markov chain with transition probability matrix P (.) and ergodic matrix Π is the matrix D ≡ ∫ ∞ 0 (P (t) − Π)dt. We give conditions for D to exist and discuss properties and a representation of D. The deviation matrix of a birthdeath process i ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
The deviation matrix of an ergodic, continuoustime Markov chain with transition probability matrix P (.) and ergodic matrix Π is the matrix D ≡ ∫ ∞ 0 (P (t) − Π)dt. We give conditions for D to exist and discuss properties and a representation of D. The deviation matrix of a birthdeath process
Results 1  10
of
462,062