Results 1  10
of
189,691
Bayesian Interpolation
 Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 721 (17 self)
 Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data
Algorithms for Scalable Synchronization on SharedMemory Multiprocessors
 ACM Transactions on Computer Systems
, 1991
"... Busywait techniques are heavily used for mutual exclusion and barrier synchronization in sharedmemory parallel programs. Unfortunately, typical implementations of busywaiting tend to produce large amounts of memory and interconnect contention, introducing performance bottlenecks that become marke ..."
Abstract

Cited by 567 (32 self)
 Add to MetaCart
markedly more pronounced as applications scale. We argue that this problem is not fundamental, and that one can in fact construct busywait synchronization algorithms that induce no memory or interconnect contention. The key to these algorithms is for every processor to spin on separate locally
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
number of ideas and approaches to approximate processing as currently being formulated in the computer science community. We then present four examples of signal processing algorithms/systems that are structured with these goals in mind. These examples may be viewed as partial inroads toward the ultimate
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
On Bayesian analysis of mixtures with an unknown number of components
 INSTITUTE OF INTERNATIONAL ECONOMICS PROJECT ON INTERNATIONAL COMPETITION POLICY,&QUOT; COM/DAFFE/CLP/TD(94)42
, 1997
"... ..."
A Practical Bayesian Framework for Backprop Networks
 Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract

Cited by 496 (20 self)
 Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
A theory of memory retrieval
 PSYCHOL. REV
, 1978
"... A theory of memory retrieval is developed and is shown to apply over a range of experimental paradigms. Access to memory traces is viewed in terms of a resonance metaphor. The probe item evokes the search set on the basis of probememory item relatedness, just as a ringing tuning fork evokes sympath ..."
Abstract

Cited by 728 (81 self)
 Add to MetaCart
A theory of memory retrieval is developed and is shown to apply over a range of experimental paradigms. Access to memory traces is viewed in terms of a resonance metaphor. The probe item evokes the search set on the basis of probememory item relatedness, just as a ringing tuning fork evokes
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such
Results 1  10
of
189,691