Results 1 - 10
of
6,211
Analysis of Recommendation Algorithms for E-Commerce
, 2000
"... Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations during a live customer interaction and they are achieving widespread success in E-Commerce nowadays. In this paper, we investigate several techniques for analyzing large-scale pu ..."
Abstract
-
Cited by 523 (22 self)
- Add to MetaCart
-scale purchase and preference data for the purpose of producing useful recommendations to customers. In particular, we apply a collection of algorithms such as traditional data mining, nearest-neighbor collaborative ltering, and dimensionality reduction on two dierent data sets. The rst data set was derived from
A comparative analysis of selection schemes used in genetic algorithms
- Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract
-
Cited by 531 (31 self)
- Add to MetaCart
or differential equations, which are verified through computer simulations. The analysis provides convenient approximate or exact solutions as well as useful convergence time and growth ratio estimates. The paper recommends practical application of the analyses and suggests a number of paths for more detailed
A Sequential Algorithm for Training Text Classifiers
, 1994
"... The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers was ..."
Abstract
-
Cited by 631 (10 self)
- Add to MetaCart
The ability to cheaply train text classifiers is critical to their use in information retrieval, content analysis, natural language processing, and other tasks involving data which is partly or fully textual. An algorithm for sequential sampling during machine learning of statistical classifiers
The use of the area under the ROC curve in the evaluation of machine learning algorithms
- PATTERN RECOGNITION
, 1997
"... In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi-layer Perceptron, k-Ne ..."
Abstract
-
Cited by 685 (3 self)
- Add to MetaCart
sensitivity in Analysis of Variance (ANOVA) tests; a standard error that decreased as both AUC and the number of test samples increased; decision threshold independent; and it is invariant to a priori class probabilities. The paper concludes with the recommendation that AUC be used in preference to overall
Mega: molecular evolutionary genetic analysis software for microcomputers
- CABIOS
, 1994
"... A computer program package called MEGA has been developed for estimating evolutionary distances, reconstructing phylogenetic trees and computing basic statistical quantities from molecular data. It is written in C+ + and is intended to be used on IBM and IBM-compatible personal computers. In this pr ..."
Abstract
-
Cited by 505 (10 self)
- Add to MetaCart
, new algorithms of branch-and-bound and heuristic searches are implemented. In addition, MEGA computes statistical quantities such as nucleotide and amino acid frequencies, transition/transversion biases, codon frequencies (codon usage tables), and the number of variable sites in specified segments
MEGA5: Molecular evolutionary genetics analysis using maximum . . .
, 2011
"... Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version ..."
Abstract
-
Cited by 7284 (25 self)
- Add to MetaCart
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract
-
Cited by 770 (3 self)
- Add to MetaCart
) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy
A scheduling model for reduced CPU energy
- ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 1995
"... The energy usage of computer systems is becoming an important consideration, especially for batteryoperated systems. Various methods for reducing energy consumption have been investigated, both at the circuit level and at the operating systems level. In this paper, we propose a simple model of job s ..."
Abstract
-
Cited by 558 (3 self)
- Add to MetaCart
an off-line algorithm that computes, for any set of jobs, a minimum-energy schedule. We then consider some on-line algorithms and their competitive performance for the power function P(s) = sp where p 3 2. It is shown that one natural heuristic, called the Average Rate heuristic, uses at most a constant
An extensive empirical study of feature selection metrics for text classification
- J. of Machine Learning Research
, 2003
"... Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison ..."
Abstract
-
Cited by 496 (15 self)
- Add to MetaCart
Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison
Results 1 - 10
of
6,211