Results 1  10
of
1,510,495
An analysis of Bayesian classifiers
 IN PROCEEDINGS OF THE TENTH NATIONAL CONFERENCE ON ARTI CIAL INTELLIGENCE
, 1992
"... In this paper we present anaveragecase analysis of the Bayesian classifier, a simple induction algorithm that fares remarkably well on many learning tasks. Our analysis assumes a monotone conjunctive target concept, and independent, noisefree Boolean attributes. We calculate the probability that t ..."
Abstract

Cited by 432 (17 self)
 Add to MetaCart
In this paper we present anaveragecase analysis of the Bayesian classifier, a simple induction algorithm that fares remarkably well on many learning tasks. Our analysis assumes a monotone conjunctive target concept, and independent, noisefree Boolean attributes. We calculate the probability
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less
1487 Science Publications JCS ANALYSIS OF BAYESIAN CLASSIFIER ACCURACY
"... The naïve Bayes classifier is considered one of the most effective classification algorithms today, competing with more modern and sophisticated classifiers. Despite being based on unrealistic (naïve) assumption that all variables are independent, given the output class, the classifier provides prop ..."
Abstract
 Add to MetaCart
between variables in the data model in order to identify the reasons which prevent a Bayesian network to provide good performance. A detailed analysis of the data is also proposed, unlike other existing work, as well as adjustments in case of limit values between two adjacent classes. Furthermore
Estimating Continuous Distributions in Bayesian Classifiers
 In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract

Cited by 489 (2 self)
 Add to MetaCart
the normality assumption and instead use statistical methods for nonparametric density estimation. For a naive Bayesian classifier, we present experimental results on a variety of natural and artificial domains, comparing two methods of density estimation: assuming normality and modeling each conditional
On Bayesian analysis of mixtures with an unknown number of components
 INSTITUTE OF INTERNATIONAL ECONOMICS PROJECT ON INTERNATIONAL COMPETITION POLICY,&QUOT; COM/DAFFE/CLP/TD(94)42
, 1997
"... ..."
On combining classifiers
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1998
"... We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental ..."
Abstract

Cited by 1392 (32 self)
 Add to MetaCart
. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions—the sum rule—outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 805 (26 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains
Bayesian Data Analysis
, 1995
"... I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chisquared pvalue when he wanted to check the misfit of a model to data (Gelman, Meng and Ste ..."
Abstract

Cited by 2132 (59 self)
 Add to MetaCart
generalization of Jeffreys’s ideas is to explicitly include model checking in the process of data analysis.
Bayesian Interpolation
 Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 721 (17 self)
 Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 588 (25 self)
 Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH (GARCH) models [see Bollerslev, Chou, and Kroner (1992) for a survey of ARCH modeling], both the mean and logvolatility equations have separate error terms. The ease of evaluating the ARCH likelihood function and the ability of the ARCH specification to accommodate the timevarying volatility found in many economic time series has fostered an explosion in the use of ARCH models. On the other hand, the likelihood function for stochastic volatility models is difficult to evaluate, and hence these models have had limited empirical application
Results 1  10
of
1,510,495