Results 1  10
of
2,205,245
An Algebraic Theory of Observables
, 1994
"... We give an algebraic formalization of SLDtrees and their abstractions (observables) . We can state and prove in the framework several useful theorems (ANDcompositionality, correctness and full abstraction of the denotation, equivalent topdown and bottomup constructions) about semantic properties ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
We give an algebraic formalization of SLDtrees and their abstractions (observables) . We can state and prove in the framework several useful theorems (ANDcompositionality, correctness and full abstraction of the denotation, equivalent topdown and bottomup constructions) about semantic
Representation Theory of Artin Algebras
 Studies in Advanced Mathematics
, 1994
"... The representation theory of artin algebras, as we understand it today, is a relatively new area of mathematics, as most of the main developments have occurred ..."
Abstract

Cited by 657 (10 self)
 Add to MetaCart
The representation theory of artin algebras, as we understand it today, is a relatively new area of mathematics, as most of the main developments have occurred
Algebraic Graph Theory
"... Algebraic graph theory comprises both the study of algebraic objects arising in connection with graphs, for example, automorphism groups of graphs along with the use of algebraic tools to establish interesting properties of combinatorial objects. One of the oldest themes in the area is the investiga ..."
Abstract

Cited by 868 (12 self)
 Add to MetaCart
Algebraic graph theory comprises both the study of algebraic objects arising in connection with graphs, for example, automorphism groups of graphs along with the use of algebraic tools to establish interesting properties of combinatorial objects. One of the oldest themes in the area
Ktheory for operator algebras
 Mathematical Sciences Research Institute Publications
, 1998
"... p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a ..."
Abstract

Cited by 559 (0 self)
 Add to MetaCart
p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a bounded interval in R, in modern language the original statement of the theorem was that L 2 ([a, b]) is complete and abstractly isomorphic to l 2. According to [Jah03, p. 385], the name “Hilbert space ” was first used in 1908 by A. Schönflies, apparently to refer to what we today call l 2. Von Neumann used the same name for Hilbert spaces in the modern sense (complete inner product spaces), which he defined in 1928. p. 3 line6: At the end of the line, 2ɛ should be 4ɛ. p. 3 I.1.2.3: The statement that a dense subspace of a Hilbert space H contains an orthonormal basis for H can be false if H is nonseparable. In fact, I. Farah (private communication) has shown that a Hilbert space of dimension 2ℵ0 has a dense subspace which does not contain any uncountable orthonormal set. A similar example was obtained by Dixmier [Dix53]. p. 89 I.2.4.3(i): Some of the statements on p. 9 can be false if the measure space is not σfinite. p. 13: add after I.2.6.16: I.2.6.17. If X is a compact subset of C not containing 0, and k ∈ N, there is in general no bound on the norm of T −1 as T ranges over all operators with ‖T ‖ ≤ k and σ(T) ⊆ X. For example, let Sn ∈ L(l 2) be the truncated shift: Sn(α1, α2,...) = (0, α1, α2,..., αn, 0, 0,...) and let Tn = I − Sn. ‖Sn ‖ = 1, so ‖Tn ‖ ≤ 2 for all n. Since Sn is nilpotent, σ(Sn) = {0}, so σ(Tn) = {1} for all n. Tn is invertible, with T −1 n = I + Sn + ξ1 ‖ = √ n + 1, so ‖T −1
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Algebraic laws for nondeterminism and concurrency
 Journal of the ACM
, 1985
"... Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. Firs ..."
Abstract

Cited by 600 (13 self)
 Add to MetaCart
observation congruence class. The paper demonstrates, for a sequence of simple languages expressing finite (terminating) behaviors, that in each case observation congruence can be axiomatized algebraically. Moreover, with the addition of recursion and another simple extension, the algebraic language described
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented by 200300 of the largest singular vectors are then matched against user queries. We call this retrieval method Latent Semantic Indexing (LSI) because the subspace represents important associative relationships between terms and documents that are not evident in individual documents. LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promising way to improve users...
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional Chern
Results 1  10
of
2,205,245