Results 1  10
of
99,817
ForwardBackward Squeezing Propagator
, 1996
"... I show that a usual propagator cannot be defined for the pseudodiffusion equation of the Qfunctions. Instead, a forwardbackward propagator is defined, which motivated a generalization of CahillGlauber interpolating operator. An algorithm is also given for squeezing Q functions directly, using on ..."
Abstract
 Add to MetaCart
I show that a usual propagator cannot be defined for the pseudodiffusion equation of the Qfunctions. Instead, a forwardbackward propagator is defined, which motivated a generalization of CahillGlauber interpolating operator. An algorithm is also given for squeezing Q functions directly, using
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
A Generalization of Forwardbackward Algorithm
, 2016
"... Abstract. Structured prediction has become very important in recent years. A simple but notable class of structured prediction is one for sequences, socalled sequential labeling. For sequential labeling, it is often required to take a summation over all the possible output sequences, when estimati ..."
Abstract
 Add to MetaCart
estimating the parameters of a probabilistic model for instance. We cannot make the direct calculation of such a summation from its definition in practice. Although the ordinary forwardbackward algorithm provides an efficient way to do it, it is applicable to limited types of summations. In this paper, we
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
TopQuark ForwardBackward Asymmetry
 In RandallSundrum Models Beyond The Leading Order. JHEP
, 2010
"... ar ..."
Verifying Analog Oscillator Circuits Using Forward/Backward Abstraction Refinement
 In DATE 2006: Design, Automation and Test in Europe
, 2006
"... Properties of analog circuits can be verified formally by partitioning the continuous state space and applying hybrid system verification techniques to the resulting abstraction. To verify properties of oscillator circuits, cyclic invariants need to be computed. Methods based on forward reachability ..."
Abstract

Cited by 42 (1 self)
 Add to MetaCart
Properties of analog circuits can be verified formally by partitioning the continuous state space and applying hybrid system verification techniques to the resulting abstraction. To verify properties of oscillator circuits, cyclic invariants need to be computed. Methods based on forward
Results 1  10
of
99,817