Results 1  10
of
305,781
AllPairs Bottleneck Paths in Vertex Weighted Graphs
 In Proc. of SODA, 978–985
, 2007
"... Let G = (V, E, w) be a directed graph, where w: V → R is an arbitrary weight function defined on its vertices. The bottleneck weight, or the capacity, of a path is the smallest weight of a vertex on the path. For two vertices u, v the bottleneck weight, or the capacity, from u to v, denoted c(u, v), ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
), is the maximum bottleneck weight of a path from u to v. In the AllPairs Bottleneck Paths (APBP) problem we have to find the bottleneck weights for all ordered pairs of vertices. Our main result is an O(n 2.575) time algorithm for the APBP problem. The exponent is derived from the exponent of fast matrix
A New Approach to AllPairs Shortest Paths on RealWeighted Graphs
 Theoretical Computer Science
, 2003
"... We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps ..."
Abstract

Cited by 44 (3 self)
 Add to MetaCart
We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
On the ComparisonAddition Complexity of AllPairs Shortest Paths
 In Proc. 13th Int'l Symp. on Algorithms and Computation (ISAAC'02
, 2002
"... We present an allpairs shortest path algorithm for arbitrary graphs that performs O(mn log (m; n)) comparison and addition operations, where m and n are the number of edges and vertices, resp., and is Tarjan's inverseAckermann function. Our algorithm eliminates the sorting bottleneck inherent ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
We present an allpairs shortest path algorithm for arbitrary graphs that performs O(mn log (m; n)) comparison and addition operations, where m and n are the number of edges and vertices, resp., and is Tarjan's inverseAckermann function. Our algorithm eliminates the sorting bottleneck
AllPairs SmallStretch Paths
 Journal of Algorithms
, 1997
"... Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that f ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Finding the Hidden Path: Time Bounds for AllPairs Shortest Paths
, 1993
"... We investigate the allpairs shortest paths problem in weighted graphs. We present an algorithmthe Hidden Paths Algorithmthat finds these paths in time O(m* n+n² log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra&ap ..."
Abstract

Cited by 76 (0 self)
 Add to MetaCart
We investigate the allpairs shortest paths problem in weighted graphs. We present an algorithmthe Hidden Paths Algorithmthat finds these paths in time O(m* n+n² log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra
More algorithms for allpairs shortest paths in weighted graphs
 In Proceedings of 39th Annual ACM Symposium on Theory of Computing
, 2007
"... In the first part of the paper, we reexamine the allpairs shortest paths (APSP) problem and present a new algorithm with running time O(n 3 log 3 log n / log 2 n), which improves all known algorithms for general realweighted dense graphs. In the second part of the paper, we use fast matrix multipl ..."
Abstract

Cited by 79 (3 self)
 Add to MetaCart
In the first part of the paper, we reexamine the allpairs shortest paths (APSP) problem and present a new algorithm with running time O(n 3 log 3 log n / log 2 n), which improves all known algorithms for general realweighted dense graphs. In the second part of the paper, we use fast matrix
Results 1  10
of
305,781