Results 1  10
of
2,347,181
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
problems occur at a critical value of such a parameter. This critical value separates two regions of characteristically different properties. For example, for Kcolorability, the critical value separates overconstrained from underconstrained random graphs, and it marks the value at which the probability
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
required by earlier algorithms. First, the paper states the maximum flow problem, gives the FordFulkerson labeling method for its solution, and points out that an improper choice of flow augmenting paths can lead to severe computational difficulties. Then rules of choice that avoid these difficulties
The Hungarian method for the assignment problem
 Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract

Cited by 1238 (0 self)
 Add to MetaCart
in the work of two Hungarian mathematicians may be exploited to yield a new method of solving this problem. 1.
ALGORITHMS FOR THE ASSIGNMENT AND TRANSPORTATION PROBLEMS
, 1957
"... In this paper we presen algorithms for the solution of the general assignment and transportation problems. In Section 1, a statement of the algorithm for the assignment problem appears, along with a proof for the correctness of the algorithm. The remarks which constitute the proof are incorporated p ..."
Abstract

Cited by 444 (0 self)
 Add to MetaCart
In this paper we presen algorithms for the solution of the general assignment and transportation problems. In Section 1, a statement of the algorithm for the assignment problem appears, along with a proof for the correctness of the algorithm. The remarks which constitute the proof are incorporated
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 734 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 776 (28 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
A Note on the Confinement Problem
, 1973
"... This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified. ..."
Abstract

Cited by 532 (0 self)
 Add to MetaCart
This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified.
Results 1  10
of
2,347,181