Results 1 - 10
of
375,219
Semi-Supervised Learning Literature Survey
, 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract
-
Cited by 757 (8 self)
- Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a
Distributed Computing in Practice: The Condor Experience
- Concurrency and Computation: Practice and Experience
, 2005
"... Since 1984, the Condor project has enabled ordinary users to do extraordinary computing. Today, the project continues to explore the social and technical problems of cooperative computing on scales ranging from the desktop to the world-wide computational grid. In this chapter, we provide the history ..."
Abstract
-
Cited by 542 (7 self)
- Add to MetaCart
, we reflect on the lessons of experience and chart the course traveled by research ideas as they grow into production systems.
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract
-
Cited by 5500 (120 self)
- Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection
Knowledge-based Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract
-
Cited by 514 (8 self)
- Add to MetaCart
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge
LabelMe: A Database and Web-Based Tool for Image Annotation
, 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract
-
Cited by 670 (47 self)
- Add to MetaCart
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant
The Great Reversals: The Politics of Financial Development in the 20th Century
, 2001
"... Indicators of the development of the financial sector do not improve monotonically over time. In particular, we find that by most measures, countries were more financially developed in 1913 than in 1980 and only recently have they surpassed their 1913 levels. This pattern cannot be explained by stru ..."
Abstract
-
Cited by 527 (13 self)
- Add to MetaCart
that different kinds of institutional heritages afford different scope for private interests to express themselves, we obtain a...
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract
-
Cited by 529 (4 self)
- Add to MetaCart
The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a
Statecharts: A Visual Formalism For Complex Systems
, 1987
"... We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discrete-event systems, such as multi-computer real-time systems, communication protocols and digital control units. Our diagrams, which we cal ..."
Abstract
-
Cited by 2683 (56 self)
- Add to MetaCart
We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discrete-event systems, such as multi-computer real-time systems, communication protocols and digital control units. Our diagrams, which we
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1-norm Solution is also the Sparsest Solution
- Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract
-
Cited by 560 (10 self)
- Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almost-spherical sections in Banach space theory, and deviation bounds for the eigenvalues
Results 1 - 10
of
375,219