Results 11  20
of
510,190
Nested Transactions: An Approach to Reliable Distributed Computing
, 1981
"... Distributed computing systems are being built and used more and more frequently. This distributod computing revolution makes the reliability of distributed systems an important concern. It is fairly wellunderstood how to connect hardware so that most components can continue to work when others are ..."
Abstract

Cited by 527 (1 self)
 Add to MetaCart
Distributed computing systems are being built and used more and more frequently. This distributod computing revolution makes the reliability of distributed systems an important concern. It is fairly wellunderstood how to connect hardware so that most components can continue to work when others
The interdisciplinary study of coordination
 ACM Computing Surveys
, 1994
"... This survey characterizes an emerging research area, sometimes called coordination theory, that focuses on the interdisciplinary study of coordination. Research in this area uses and extends ideas about coordination from disciplines such as computer science, organization theory, operations research, ..."
Abstract

Cited by 773 (21 self)
 Add to MetaCart
This survey characterizes an emerging research area, sometimes called coordination theory, that focuses on the interdisciplinary study of coordination. Research in this area uses and extends ideas about coordination from disciplines such as computer science, organization theory, operations research
Estimating Continuous Distributions in Bayesian Classifiers
 In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract

Cited by 489 (2 self)
 Add to MetaCart
distribution with a single Gaussian; and using nonparametric kernel density estimation. We observe large reductions in error on several natural and artificial data sets, which suggests that kernel estimation is a useful tool for learning Bayesian models. In Proceedings of the Eleventh Conference on Uncertainty
The science of emotional intelligence
, 2005
"... This article presents a framework for emotiolllJl intelligenCl!, a set of skills hypothesized to contribute to the accurate appraisal and expression of emotion in oneself and in others, the effective regulation of emotion in self and others, and the use of feelings to motivate, plan, and achieve in ..."
Abstract

Cited by 777 (35 self)
 Add to MetaCart
in one's life. We start by reviewing the debate about the adaptive versus maladaptive qualities of emotion. We then explore the literature on intelligence, and especiaUy social intelligence. to examine the place of emotion in traditional intelligence conceptions. A framework for integrating
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract

Cited by 562 (15 self)
 Add to MetaCart
A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
A Theory of Diagnosis from First Principles
 ARTIFICIAL INTELLIGENCE
, 1987
"... Suppose one is given a description of a system, together with an observation of the system's behaviour which conflicts with the way the system is meant to behave. The diagnostic problem is to determine those components of the system which, when assumed to be functioning abnormally, will explain ..."
Abstract

Cited by 1117 (5 self)
 Add to MetaCart
, the theory accommodates diagnostic reasoning in a wide variety of practical settings, including digital and analogue circuits, medicine, and database updates. The theory leads to an algorithm for computing all diagnoses, and to various results concerning principles of measurement for discriminating among
Edge Detection
, 1985
"... For both biological systems and machines, vision begins with a large and unwieldy array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene, such as the location of object boundaries and the s ..."
Abstract

Cited by 1277 (1 self)
 Add to MetaCart
and the structure, color and texture of object surfaces, from the twodimensional image that is projected onto the eye or camera. This goal is not achieved in a single step; vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clue
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Results 11  20
of
510,190