• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 422,650
Next 10 →

Managing Energy and Server Resources in Hosting Centers

by Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat - In Proceedings of the 18th ACM Symposium on Operating System Principles (SOSP , 2001
"... Interact hosting centers serve multiple service sites from a common hardware base. This paper presents the design and implementation of an architecture for resource management in a hosting center op-erating system, with an emphasis on energy as a driving resource management issue for large server cl ..."
Abstract - Cited by 558 (37 self) - Add to MetaCart
clusters. The goals are to provi-sion server resources for co-hosted services in a way that automati-cally adapts to offered load, improve the energy efficiency of server dusters by dynamically resizing the active server set, and respond to power supply disruptions or thermal events by degrading service

An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks

by Tijs van Dam, Koen Langendoen - SENSYS'03 , 2003
"... In this paper we describe T-MAC, a contention-based Medium Access Control protocol for wireless sensor networks. Applications for these networks have some characteristics (low message rate, insensitivity to latency) that can be exploited to reduce energy consumption by introducing an active/sleep du ..."
Abstract - Cited by 526 (13 self) - Add to MetaCart
/sleep duty cycle. To handle load variations in time and location T-MAC introduces an adaptive duty cycle in a novel way: by dynamically ending the active part of it. This reduces the amount of energy wasted on idle listening, in which nodes wait for potentially incoming messages, while still maintaining a

Garp: A MIPS Processor with a Reconfigurable Coprocessor

by John R. Hauser , John Wawrzynek , 1997
"... Typical reconfigurable machines exhibit shortcomings that make them less than ideal for general-purpose computing. The Garp Architecture combines reconfigurable hardware with a standard MIPS processor on the same die to retain the better features of both. Novel aspects of the architecture are presen ..."
Abstract - Cited by 402 (6 self) - Add to MetaCart
Typical reconfigurable machines exhibit shortcomings that make them less than ideal for general-purpose computing. The Garp Architecture combines reconfigurable hardware with a standard MIPS processor on the same die to retain the better features of both. Novel aspects of the architecture

Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating Systems

by Padmanabhan Pillai, Kang G. Shin , 2001
"... In recent years, there has been a rapid and wide spread of nontraditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery lif ..."
Abstract - Cited by 498 (4 self) - Add to MetaCart
life. Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the hardware characteristics of processors to reduce energy dissipation by lowering the supply voltage and operating frequency. The DVS algorithms are shown to be able to make dramatic energy savings while providing

A Key-Management Scheme for Distributed Sensor Networks

by Laurent Eschenauer, Virgil D. Gligor - In Proceedings of the 9th ACM Conference on Computer and Communications Security , 2002
"... Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable ..."
Abstract - Cited by 901 (11 self) - Add to MetaCart
Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable

Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks

by Wei Ye, John Heidemann, Deborah Estrin - IEEE/ACM Transactions on Networking , 2004
"... This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect senso ..."
Abstract - Cited by 684 (15 self) - Add to MetaCart
.11 in several ways: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses a few novel techniques to reduce energy consumption and support self-configuration. It enables low-duty-cycle operation in a multihop network. Nodes form virtual

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

by Wei Ye, John Heidemann, Deborah Estrin , 2002
"... This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect senso ..."
Abstract - Cited by 1488 (37 self) - Add to MetaCart
wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption

Geography-informed Energy Conservation for Ad Hoc Routing

by Ya Xu, John Heidemann, Deborah Estrin - ACM MOBICOM , 2001
"... We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity. GA ..."
Abstract - Cited by 1037 (22 self) - Add to MetaCart
We introduce a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks. GAF conserves energy by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity

Fast Parallel Algorithms for Short-Range Molecular Dynamics

by Steve Plimpton - JOURNAL OF COMPUTATIONAL PHYSICS , 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract - Cited by 622 (6 self) - Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular

Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce

by Dieter Fensel , 2007
"... Currently computers are changing from single isolated devices to entry points into a world wide network of information exchange and business transactions called the World Wide Web (WWW). Therefore support in the exchange of data, information, and knowledge exchange is becoming the key issue in cur ..."
Abstract - Cited by 643 (46 self) - Add to MetaCart
will play in knowledge management and in electronic commerce. In addition, I show how arising web standards such as RDF and XML can be used as
Next 10 →
Results 1 - 10 of 422,650
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University