Results 1  10
of
279,726
Adaptive Embedded Subgraph Algorithms using WalkSum Analysis
, 2007
"... We consider the estimation problem in Gaussian graphical models with arbitrary structure. We analyze the Embedded Trees algorithm, which solves a sequence of problems on tractable subgraphs thereby leading to the solution of the estimation problem on an intractable graph. Our analysis is based on th ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
on the recently developed walksum interpretation of Gaussian estimation. We show that nonstationary iterations of the Embedded Trees algorithm using any sequence of subgraphs converge in walksummable models. Based on walksum calculations, we develop adaptive methods that optimize the choice of subgraphs used
Adaptive Embedded Subgraph Algorithms using WalkSum Analysis
"... We consider the estimation problem in Gaussian graphical models with arbitrary structure. We analyze the Embedded Trees algorithm, which solves a sequence of problems on tractable subgraphs thereby leading to the solution of the estimation problem on an intractable graph. Our analysis is based on th ..."
Abstract
 Add to MetaCart
on the recently developed walksum interpretation of Gaussian estimation. We show that nonstationary iterations of the Embedded Trees algorithm using any sequence of subgraphs converge in walksummable models. Based on walksum calculations, we develop adaptive methods that optimize the choice of subgraphs
WalkSums and Belief Propagation in Gaussian Graphical Models
 Journal of Machine Learning Research
, 2006
"... We present a new framework based on walks in a graph for analysis and inference in Gaussian graphical models. The key idea is to decompose the correlation between each pair of variables as a sum over all walks between those variables in the graph. The weight of each walk is given by a product of edg ..."
Abstract

Cited by 105 (17 self)
 Add to MetaCart
We present a new framework based on walks in a graph for analysis and inference in Gaussian graphical models. The key idea is to decompose the correlation between each pair of variables as a sum over all walks between those variables in the graph. The weight of each walk is given by a product
Estimation in Gaussian Graphical Models Using Tractable Subgraphs: A WalkSum Analysis
, 2008
"... Graphical models provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found applications in a variety of fields such as computer vision, image processing, and distributed sensor networks. In this paper, we present a general clas ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
inference. We describe the walks “computed ” by the algorithms using walksum diagrams, and show that for iterations based on a very large and flexible set of sequences of subgraphs, convergence is guaranteed in walksummable models. Consequently, we are free to choose spanning trees and subsets
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
1 Estimation in Gaussian Graphical Models using Tractable Subgraphs: A WalkSum Analysis
"... Abstract — Graphical models provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found applications in a variety of fields such as computer vision, image processing, and distributed sensor networks. In this paper, we present a ge ..."
Abstract
 Add to MetaCart
of Gaussian inference. We describe the walks “computed ” by the algorithms using walksum diagrams, and show that for iterations based on a very large and flexible set of sequences of subgraphs, convergence is guaranteed in walksummable models. Consequently, we are free to choose spanning trees and subsets
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
flexibility enhances cognitive simulation studies by simplifying experimentation. Furthermore, SME is very efficient, making it a useful component in machine learning systems as well. We review the Structuremapping theory and describe the design of the engine. We analyze the complexity of the algorithm
RealTime Dynamic Voltage Scaling for LowPower Embedded Operating Systems
, 2001
"... In recent years, there has been a rapid and wide spread of nontraditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery lif ..."
Abstract

Cited by 498 (4 self)
 Add to MetaCart
life. Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the hardware characteristics of processors to reduce energy dissipation by lowering the supply voltage and operating frequency. The DVS algorithms are shown to be able to make dramatic energy savings while providing
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Adaptive Protocols for Information Dissemination in Wireless Sensor Networks
, 1999
"... In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation) , that eciently disseminates information among sensors in an energyconstrained wireless sensor network. Nodes running a SPIN communication protocol name their data using highlev ..."
Abstract

Cited by 662 (10 self)
 Add to MetaCart
In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation) , that eciently disseminates information among sensors in an energyconstrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high
Results 1  10
of
279,726