• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 257,538
Next 10 →

"GrabCut” -- interactive foreground extraction using iterated graph cuts

by Carsten Rother, Vladimir Kolmogorov, Andrew Blake - ACM TRANS. GRAPH , 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract - Cited by 1140 (36 self) - Add to MetaCart
of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for “border matting ” has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show

Least-Squares Policy Iteration

by Michail G. Lagoudakis, Ronald Parr - JOURNAL OF MACHINE LEARNING RESEARCH , 2003
"... We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract - Cited by 461 (12 self) - Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach

Text Chunking using Transformation-Based Learning

by Lance A. Ramshaw, Mitchell P. Marcus , 1995
"... Eric Brill introduced transformation-based learning and showed that it can do part-ofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including non-recursive "baseNP" chunks. For ..."
Abstract - Cited by 509 (0 self) - Add to MetaCart
that partition the sentence. Some interesting adaptations to the transformation-based learning approach are also suggested by this application.

Sparse Bayesian Learning and the Relevance Vector Machine

by Michael E. Tipping, Alex Smola , 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract - Cited by 958 (5 self) - Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance

Refactoring Object-Oriented Frameworks

by William F. Opdyke , 1992
"... This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of object-oriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings are defin ..."
Abstract - Cited by 482 (4 self) - Add to MetaCart
This thesis defines a set of program restructuring operations (refactorings) that support the design, evolution and reuse of object-oriented application frameworks. The focus of the thesis is on automating the refactorings in a way that preserves the behavior of a program. The refactorings

Ptolemy: A Framework for Simulating and Prototyping Heterogeneous Systems

by Joseph Buck, Soonhoi Ha, Edward A. Lee, David G. Messerschmitt , 1992
"... Ptolemy is an environment for simulation and prototyping of heterogeneous systems. It uses modern object-oriented software technology (C++) to model each subsystem in a natural and efficient manner, and to integrate these subsystems into a whole. Ptolemy encompasses practically all aspects of design ..."
Abstract - Cited by 569 (90 self) - Add to MetaCart
Ptolemy is an environment for simulation and prototyping of heterogeneous systems. It uses modern object-oriented software technology (C++) to model each subsystem in a natural and efficient manner, and to integrate these subsystems into a whole. Ptolemy encompasses practically all aspects

Learning probabilistic relational models

by Nir Friedman, Lise Getoor, Daphne Koller, Avi Pfeffer - In IJCAI , 1999
"... A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract - Cited by 619 (31 self) - Add to MetaCart
A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much

Boosting a Weak Learning Algorithm By Majority

by Yoav Freund , 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract - Cited by 516 (15 self) - Add to MetaCart
presented by Schapire in his paper "The strength of weak learnability", and represents an improvement over his results. The analysis of our algorithm provides general upper bounds on the resources required for learning in Valiant's polynomial PAC learning framework, which are the best general

Machine Learning in Automated Text Categorization

by Fabrizio Sebastiani - ACM COMPUTING SURVEYS , 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract - Cited by 1658 (22 self) - Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual

Predicting How People Play Games: Reinforcement Learning . . .

by Ido Erev, Alvin E. Roth - AMERICAN ECONOMIC REVIEW , 1998
"... ..."
Abstract - Cited by 607 (23 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 1 - 10 of 257,538
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University