Results 1 - 10
of
19,292
A Two-Population Evolutionary Algorithm for Feature Extraction: Combining Filter and Wrapper
"... Abstract — Extracting good features is critical to the performance of learning algorithms such as classifiers. Feature extraction selects and transforms original features to find information hidden in data. Due to the huge search space of selection and transformation of features, exhaustive search i ..."
Abstract
- Add to MetaCart
overfitting, so that a slight enhancement of fitness in training can dramatically reduce the classification accuracy for unseen testing data. To cope with this problem, this paper proposes a two-population EA for feature extraction (TEAFE) that combines filter and wrapper approaches, and shows the promising
Wrappers for Feature Subset Selection
- AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract
-
Cited by 1522 (3 self)
- Add to MetaCart
the strengths and weaknesses of the wrapper approach andshow a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two
Wrapper Induction for Information Extraction
, 1997
"... The Internet presents numerous sources of useful information---telephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources are usually ..."
Abstract
-
Cited by 612 (30 self)
- Add to MetaCart
are usually formatted for use by people (e.g., the relevant content is embedded in HTML pages), so extracting their content is difficult. Wrappers are often used for this purpose. A wrapper is a procedure for extracting a particular resource's content. Unfortunately, hand-coding wrappers is tedious. We
An introduction to variable and feature selection
- Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract
-
Cited by 1283 (16 self)
- Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Feature selection based on mutual information: Criteria of max-depe ndency, max-relevance, and min-redundancy
- IEEE Trans. Pattern Analysis and Machine Intelligence
"... Abstract—Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we f ..."
Abstract
-
Cited by 533 (7 self)
- Add to MetaCart
first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us
An extensive empirical study of feature selection metrics for text classification
- J. of Machine Learning Research
, 2003
"... Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison ..."
Abstract
-
Cited by 483 (15 self)
- Add to MetaCart
Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison
Genetic Programming
, 1997
"... Introduction Genetic programming is a domain-independent problem-solving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract
-
Cited by 1051 (12 self)
- Add to MetaCart
is now called the genetic algorithm (GA). The genetic algorithm attempts to find a good (or best) solution to the problem by genetically breeding a population of individuals over a series of generations. In the genetic algorithm, each individual in the population represents a candidate solut
Bundle Adjustment -- A Modern Synthesis
- VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract
-
Cited by 555 (12 self)
- Add to MetaCart
This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics
Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks
- In EuroSys
, 2007
"... Dryad is a general-purpose distributed execution engine for coarse-grain data-parallel applications. A Dryad applica-tion combines computational “vertices ” with communica-tion “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract
-
Cited by 730 (27 self)
- Add to MetaCart
Dryad is a general-purpose distributed execution engine for coarse-grain data-parallel applications. A Dryad applica-tion combines computational “vertices ” with communica-tion “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set
Bigtable: A distributed storage system for structured data
- IN PROCEEDINGS OF THE 7TH CONFERENCE ON USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION - VOLUME 7
, 2006
"... Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications ..."
Abstract
-
Cited by 995 (3 self)
- Add to MetaCart
Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth, and Google Finance. These applications
Results 1 - 10
of
19,292